

State of Illinois Illinois Emergency Management Agency

2019 Radiological Environmental Monitoring Report for Sheffield Low-Level Radioactive Waste Site

(IEMA

(This Page Intentionally Left Blank)

Section Title	Page Number
Executive Summary	
Introduction	6
History of the Site	6
Site Description	
Figure 1. Location of Sheffield Low-Level Radioactive Waste Disposal Site	
Table 1. Maximum Values Estimated in the Sheffield Inventory	
Hydrology of the Sheffield LLRW Disposal Site	
Northeast Pathway	
Southeast Pathway	
Settlement Agreement	9
Table 2. Trigger limits in Water for Selected Radionuclides	
Tritium Migration	
IEMA Radiological Environmental Monitoring Program	
Sampling and Monitoring Activities	
On-Site Groundwater Sampling	
On-Site Surface Water Sampling	
Off-Site Water Sampling	
Public Water Supply Sampling	
Sediment Sampling	
Vegetation Sampling	
Air Sampling	
Direct Radiation Monitoring	
Background Reference Sampling Location	
Sampling and Monitoring Adjustments	
General Sampling and Monitoring Information	
Laboratory Analysis	
Gross Alpha / Beta Analysis	
Tritium and Carbon-14 Analysis	
Total Strontium Analysis	
Gamma Spectroscopy Analysis	
Optically Stimulated Luminescence Analysis	
Figure 2. Sources of Radiation Exposure to Man	
Minimum Detectable Concentration (MDC)	
Analysis Adjustments	
Radiological Environmental Sampling and Monitoring Results	
On-Site Groundwater Sampling Results	
On-Site Surface Water Sampling Results	
Off-Site Water Sampling Results	
Sediment Sampling Results	
Vegetation Sampling Results	
Air Sampling Results	
Direct Radiation Monitoring Results	
Results Interpretation or Limit Adjustments	
Summary	
Appendix A: Mana of IEMA Manitoring Lagations for the Chaffield LIDIN City	11
Appendix A: Maps of IEMA Monitoring Locations for the Sheffield LLRW Site .	
Appendix B: On-Site Tritium (H-3) Water Sample Result Graphs	
Appendix C: Off-Site Tritium (H-3) Water Sample Result Graphs	
Appendix D: Sheffield Sample Results	
Appendix E: Background Sample Results	

3 of 68

Executive Summary

The Illinois Emergency Management Agency (IEMA) is mandated with protecting the citizens and environment of Illinois from the potentially harmful effects of radioactive materials. To that end, the IEMA's Division of Nuclear Safety monitors the environs of several locations within Illinois for the presence of radionuclides. IEMA's radiological environmental monitoring program has three primary functions: 1) collection of diverse samples from carefully chosen locations on a routine basis; 2) analyzing samples for radionuclides; and 3) evaluation of test results on both an annual and historical basis. One of the locations monitored by IEMA is the Sheffield Low-Level Radioactive Waste (LLRW) disposal site near Sheffield, Illinois. The purpose of this report is to provide updated results of monitoring conducted at the Sheffield LLRW site during calendar year 2019.

The Sheffield LLRW site is located near the town of Sheffield, in Bureau County, Illinois. The site consists of a 20.4 acre disposal site and a 196 acre buffer zone. The LLRW site received radioactive waste between 1967 and 1978 when the disposal site reached capacity. Approximately 3.2 million cubic feet of waste was buried in 21 shallow earthen trenches.

The state of Illinois has conducted radiological environmental monitoring at the site since 1967. Since radioactive waste was disposed of in earthen trenches, monitoring of the groundwater on and around the site has been the primary focus of the monitoring program. Radioactive contamination was found in groundwater in the southeast quadrant of the disposal site in 1976. As a result, extensive geological and hydrological studies have been completed to gain a better understanding of the movement of contaminants away from the disposal trenches and to determine the best approach to monitor that movement.

It was discovered that two groundwater pathways flow away from the site. The primary pathway exists under the northern two-thirds of the disposal site, and the secondary under the southern one-third. Both pathways flow in a generally northeastern direction and eventually discharge into Trout Lake. IEMA's radiological monitoring efforts focus on the contamination levels along these two main pathways; however, careful monitoring is done in other areas both on-site and off to ensure that the contamination is contained within the disposal site and buffer zone.

The performance of the Sheffield LLRW site is measured by its ability to isolate the radioactive waste from the surrounding environment, thus minimizing the potential for public exposure. The radiological environmental monitoring program at the Sheffield LLRW site is designed to evaluate the site's performance by monitoring radionuclide movement, or lack thereof, away from the site.

Regulatory or "trigger" limits for specific radionuclides are defined in a settlement agreement between the State of Illinois and the original owner and operator of the site, US Ecology, known as the Sheffield Agreed Order (Agreed Order). Results from samples collected on-site are compared to these limits and to historical data in order to determine compliance with the agreement and to evaluate the site's performance. Off-site samples are compared to the more stringent United States Environmental Protection Agency (USEPA) and Illinois Environmental Protection Agency (IEPA) drinking water standards. Drinking water standards are regulated by the USEPA and IEPA. IEMA's purpose for sampling private wells and public water supplies is solely to screen for the presence of radionuclides.

As part of IEMA's Sheffield LLRW radiological environmental monitoring program, samples are collected and analyzed for a variety of radionuclides. Sampling is conducted at both on-site and off-site locations and includes groundwater, surface water, and water from public water supplies, vegetation, sediment, and air samples. Additionally, monitoring for ambient gamma radiation is conducted around the site and buffer zone. Sample and monitoring results are compared to the appropriate regulatory limits, evaluated against historical data to

4 of 68 | IEMA | Division of Nuclear Safety Sheffield Radiological Environmental Monitoring Report

| Calendar Year 2019

monitor for changes at specific sampling locations, and used to evaluate the overall performance of the LLRW site.

In 2019, with the exception of tritium concentrations found in on-site groundwater samples at Well 600, Well H and Well TB, all results from IEMA's radiological environmental monitoring program at the Sheffield LLRW site were consistent with historical data and expected contamination levels. Although concentrations of tritium in groundwater sampled at Well H and TB had been trending upward over the previous 3 years, 2019 data indicates a decline in tritium concentrations for both locations. Well 600 tritium concentrations, which began trending higher in the second quarter of 2018, continued to trend higher throughout 2019. IEMA will continue to monitor and trend these specific locations to further assess these changes and will make adjustments to the sampling plan as necessary.

Results from the sampling and monitoring conducted in 2019 indicate that the contamination plume has remained within the major groundwater pathways described in the Hydrology of the Sheffield LLRW Disposal Site section of this report and that contamination is contained within the boundaries of the Disposal Site and the Buffer Zone.

IEMA's Division of Nuclear Safety will continue to monitor the environs of, and evaluate its radiological environmental monitoring program for, the Sheffield LLRW site to ensure that the site is performing as expected and that the citizens and environment of Illinois are protected from the potentially harmful effects of radioactive materials buried at the site.

Introduction

The Illinois Emergency Management Agency (IEMA) is charged with protecting the citizens of Illinois from the potentially harmful effects of radioactive materials. To that end, IEMA's Division of Nuclear Safety monitors the environment in Illinois for the presence of radionuclides. One of the locations monitored by IEMA is the area around the Sheffield Low-Level Radioactive Waste (LLRW) disposal site. Appendix A includes maps of the area around the Sheffield LLRW site, indicating the locations of IEMA sampling points.

History of the Site

The Sheffield LLRW disposal site is located approximately three miles southwest of the town of Sheffield in Bureau County, Illinois. The town of Sheffield is about 120 miles west-southwest of Chicago, situated approximately midway between Peoria and Moline/Rock Island, just south of Interstate 80. The facility began disposing LLRW in 1967 and closed in 1978 upon reaching capacity. The LLRW disposal site includes 3.2 million cubic feet of LLRW buried in 21 shallow earthen trenches on 20.4 acres.

The state of Illinois began conducting an environmental monitoring program at the LLRW site in 1967. Between 1967 and 1980, the program was conducted by the Illinois Department of Public Health (IDPH). Since October 1980, the Illinois Emergency Management Agency (IEMA; formerly the Illinois Department of Nuclear Safety (IDNS)) has managed the monitoring program. Results of monitoring conducted between 1967 and 1988 were reported by IDNS in February 1991 (IDNS 1991), and the results of monitoring during 1989 and 1990 were reported in June 1992 (IDNS 1992). The June 1992 report also described features of the site, including meteorological and hydrological factors, which control the concentrations of radioactive contaminants in groundwater and surface water.

In 1976 radioactive contamination was observed in groundwater in the southeast quadrant of the original 20.4acre disposal site. As a result, ongoing studies of the geology and hydrology of the site were expanded by both the Illinois State Geological Survey (Heigold and Larson 1984) and the United States Geological Survey (USGS) (Foster et al. 1984). These studies were designed to determine the best approach for monitoring the movement of the radioactive contamination in the groundwater.

Since disposal of LLRW took place in earthen trenches, the major monitoring effort has been directed toward detecting radioactive contamination of groundwater. Samples are analyzed for a variety of radionuclides. These radionuclides may emit alpha particles, beta particles, and/or gamma rays. The type of radioactive emission determines the type of analysis required to detect a radionuclide.

The performance of a LLRW site is measured by its ability to isolate the radioactive waste from the surrounding environment. The environmental monitoring program at the Sheffield LLRW disposal site is designed to evaluate the site's performance as defined above by monitoring radionuclide movement, or lack thereof, away from the site and into pathways of possible human exposure.

Site Description

The Sheffield LLRW disposal site is located on rolling glaciated terrain in northcentral Illinois in Bureau County. The location of the site is shown in Figure 1. More detailed site maps and sampling locations are located in Appendix A.

Figure 1. Location of Sheffield Low-Level Radioactive Waste Disposal Site (Disposal Site indicated by red square on the map. Buffer Zone is outlined in red.)

The area near the LLRW site is sparsely populated with less than 20 residences within a two-mile radius. Sheffield, with a population of 926 (2010 Census), is three miles to the northeast. The unincorporated town of Mineral, population 237 (2010 Census), is five miles to the northwest; the town of Neponset, population 473 (2010 Census), is three miles south of the site.

The 20.4-acre disposal site contains 21 disposal trenches, varying from 8 to 25 feet deep. A 196-acre buffer zone surrounds the site which includes a small lake called Trout Lake (previously known as Strip Mine Lake and Barbed Wire Lake) and a small stream to the south and southeast. The facility was licensed to accept radioactive waste in August 1967, began disposing waste in 1968, and closed in 1978 after the shallow land burial trenches were filled with LLRW.

A precise inventory of LLRW buried in each trench was not kept by the site operator but has been estimated in three separate studies (NUS 1979; Dragonette et al. 1979; MacKenzie et al. 1985). The estimated inventory of radionuclides is listed in Table 1.

Radionuclide	Curies	Half-Life (Years)
Tritium (H-3)	5,990	12.35
Carbon-14 (C-14)	450	5,730
Iodine-129 (I-129)	0.01	15,700,000
Strontium-90 (Sr-90)	3,690	28.1
Cesium-137 (Cs-137)	15,500	30
Cobalt-60 (Co-60)	20,000	5.27
Plutonium-238 (Pu-238)	7.5	87.74
Plutonium-239 (Pu-239); Plutonium-240 (Pu-240); Plutonium-241 (Pu-241) (Pu-241)	4,870	24,065; 6,550; 14.4
Americium-241 (Am-241)	137.5	432

Table 1. Maximum Values Estimated in the Sheffield Inventory
(Important Radionuclides with Half-Lives Greater than Five years)

Two hazardous waste disposal areas are located to the north and northwest of the LLRW disposal site and are separated from it by at least 150 feet. These areas were used for the disposal of non-radioactive hazardous chemical waste. The first area accepted waste from 1968 to 1974 and the second area from 1974 to 1983.

The U.S. Environmental Protection Agency (USEPA) and the Illinois Environmental Protection Agency (IEPA) are the primary agencies responsible for regulation of the adjacent hazardous chemical waste sites. The site operator is working with USEPA and IEPA to remediate these sites and the surrounding area.

As part of this remediation effort, a single set of samples was collected during 1988 by SAIC, a US Ecology contractor, and analyzed for radionuclides as well as chemical contaminants. The results of this set of samples indicated extensive contamination of groundwater to the northeast of the LLRW site (SAIC 1988). Groundwater in this area contains tritium (hydrogen-3 or H-3, is a radioactive form of hydrogen that decays via beta emission) as well as a variety of chemical contaminants. Since tritium is chemically identical to non-radioactive hydrogen, it is readily assimilated into water (that is, one or both of the "Hs" in H_2O can be tritium, a form called "tritiated water"). This causes tritium to be very mobile in the natural environment. Tritium's half-life is 12.3 years, which means it will persist in the environment for about 100 years.

Hydrology of the Sheffield LLRW Disposal Site

The Sheffield LLRW site and its surrounding buffer zone are located on rolling glacial terrain. The shallow local aquifer is comprised of saturated glacial sediments and is isolated from the deep regional aquifer by a 450-foot sequence of Pennsylvanian shale bedrock. The piezometric surface of the glacial aquifer generally conforms to topographic drainage systems with gradients nominally trending west to east.

Northeast Pathway

The primary flow path for radiologically contaminated groundwater begins in a pebbly sand deposit that exists under the northern two-thirds of the disposal site. This relatively permeable unit (Toulon Member of the Glasford Formation) extends to the northeast where it constricts, filling a narrow outwash channel in the

8 of 68 | IEMA | Division of Nuclear Safety Sheffield Radiological Environmental Monitoring Report bedrock surface. This narrow channel, filled with deposits of saturated sand and gravel, extends from the northeast portion of the LLRW site to Trout Lake.

Because the northeast pathway is the principal route for contaminants leaving the LLRW site, considerable effort has gone toward understanding radionuclide movement in this area. Monitoring wells in this pathway include 563, 575, 577, and 600. The groundwater in these wells emanates from the continuous deposit of relatively permeable sand and gravel that underlies the northern two-thirds of LLRW site. This deposit of coarse-grained soils narrows and extends in a northeasterly direction terminating along the western shore of Trout Lake. The above-cited wells are used to sample contaminated groundwater as it moves through this narrow outwash channel from beneath the LLRW site.

Of the more than 100 groundwater monitoring wells throughout the entire buffer zone, the most highly contaminated are in the northeast pathway. These wells run along a line originating near the eastern edge of the LLRW site and extend about 900 feet in a northeasterly direction.

Southeast Pathway

A second groundwater pathway extends from under the approximate southern one-third of the LLRW site into the valley to the south and southeast. Unlike the northeast pathway, there is no continuous, spatially concentrated deposit of relatively permeable, coarse grained soils in the southeast pathway. Because of this, groundwater flow velocities and volumes are relatively reduced, lessening the potential for movement of significant quantities of radiological contamination away from the disposal site. Consequently, areas of contamination are less extensive and contaminant concentrations are significantly less than those observed in the more permeable northeast pathway. Like the northeast pathway, the vast majority of radiological contamination moving along this pathway ultimately discharges into Trout Lake.

Monitoring wells in this pathway include 512, 525, 567, 602, and TB. The most highly contaminated wells in this pathway are 512 and 602. These wells are located in the buffer zone between the southeast corner of the LLRW site and the small stream (South Creek) located about 300 feet farther to the southeast. Due to equipment malfunctions, IEMA was not able to obtain samples from Well 512 between 2013 and 2016. New sampling equipment was installed on Well 512 in 2017, and sampling resumed at that location.

Settlement Agreement

In 1979, site operator US Ecology attempted to abandon the LLRW site, unilaterally terminating its US Nuclear Regulatory Commission and IDPH licenses and state lease. This led to investigations which revealed that there were faulty trench caps. Both state and federal regulators objected to the unilateral terminations, arguing that the site operator must first safely close the site before terminating either of the licenses. This resulted in both federal and state litigation. The federal litigation was administratively argued before the Atomic Safety and Licensing Board, which eventually ruled against the operator on all counts.

The state's complaint was argued before the Bureau County Circuit Court. After ten years of negotiations, in May 1988, the state of Illinois and US Ecology came to an agreement and the litigation was resolved in the form of a settlement agreement known as the Sheffield Agreed Order (Agreed Order).

The Agreed Order specified what the site operator must do to safely close the site and assure its continuing safety into the future. Provisions and consequences of the agreement have had a significant impact on the scope of the monitoring program. The closure plan for the site has four basic parts:

The operator agreed to install a new, low-permeability clay cap over all the waste trenches. The purpose of the cap is to significantly reduce the amount of radioactive material moving away from the site, reducing the potential for movement of radioactivity beyond the buffer zone.

The operator agreed to purchase a buffer zone around the site. The 196-acre buffer zone is designed to contain, delay, and dilute any contaminants leaching from the waste. This helps to ensure that any discharges beyond the buffer zone are below the limits for release into unrestricted areas. Fences surrounding this zone were to be installed and maintained by the operator (See Figure A-1 in Appendix A).

The operator agreed to monitor and maintain the site and buffer zone until 1998, as well as establish a long-term care fund to pay for IEMA (formerly IDNS) maintenance and monitoring beyond 1998.

If radionuclides are discovered outside the buffer zone in concentrations equal to or exceeding the limits for release to unrestricted areas (see Table 2), the operator must remedy the situation at its expense or pay the state an additional \$1.9 million.

Trigger Limits in Water for Selected Radionuclides Per the Settlement Agreement of 1988			
Radionuclide	Half-Life	Limit in Water (picocuries per Liter)	
Н-3	12.35	3,000,000	
C-14	5,730	800,000	
I-129	15,700,000	60	
Sr-90	29.12	300	
Cs-137	30	20,000	
Co-60	5.27	50,000	
Pu-238	87.74	5,000	
Pu-239	24,065	5,000	
Am-241	432	4,000	

Table 2. Trigger Limits in Water for Selected Radionuclides

In 1989, a new cap consisting of 4.5 feet of highly compacted clay and 6 inches of vegetated topsoil was installed. The cap is designed to significantly reduce the amount of precipitation that can infiltrate the trenches and mobilize the waste. As part of the effort to install the cap, a number of onsite monitoring wells, sump risers, and piezometers adjacent to the waste trenches were sealed and are no longer accessible. The new cap and its immediately surrounding area are inspected regularly by IEMA and US Ecology personnel for proper vegetative cover and evidence of erosion or burrowing animals. As part of the settlement agreement, the operator has committed to immediate repairs to damaged areas.

In 2008, IEMA had the cap surveyed to estimate if subsidence is occurring over the trench area and to assess if precipitation will drain from the site or pond on the surface. The survey concluded subsidence, if any, was minimal and the cap is draining as expected.

A second cap survey was completed in 2017. The results of the 2017 survey concluded that there is some subsidence over Trench 18 that could affect drainage. The remainder of the cap shows little to no subsidence

and appears to be draining as expected. Repair of the subsidence at Trench 18 was conducted in the Fall of 2019. Repairs consisted of filling the affected area with topsoil and re-seeding with grass seed for top cover.

The Agreed Order defined terms that are only applicable to the Sheffield LLRW site, such as a "signaling event". A "signaling event" is defined as the occurrence within the Buffer Zone of any one of several events described in detail in the Agreed Order. In 1990, IDNS declared a "signaling event" because sampling and analyses detected that tritium had exited Trout Lake and the Buffer Zone Boundary. While the declaration of a signaling event does not indicate a threat to public health and safety, it serves as an official notice to the operator that events have occurred that may require attention and remedial action.

In accordance with the Agreed Order, the company was required to meet specified financial conditions or post letters of credit. The company did not meet the financial tests and did not post the required letters of credit in either 1996 or 1997. Due to the company's breach of the Agreed Order, in November 1997 the state brought suit in Bureau County to require the company to remain at the site and continue to provide site maintenance after May 1998. In April 1998, the Court ruled that the company was in breach of the agreement and could not turn the site over to the state in May 1998. The court encouraged the parties to settle remaining issues. The parties entered into an addendum to the 1988 agreement called the 1999 First Supplement, which requires the company to remain at the site until it has satisfied the financial conditions of the agreement, modifies some site monitoring requirements, and provides for transfer of private insurance for the site. Pursuant to the First Supplement, U.S. Ecology satisfied all its financial conditions in June 2001, and at that time the state took ownership of the LLRW site. US Ecology remains responsible for certain remedial actions at the facility should any become necessary. The company's liability for such an occurrence is limited to \$1.9 million and expires in 2038. The state may take possession of the buffer zone at any time for a nominal fee but must take ownership when the Agreed Order expires.

Tritium Migration

11 of 68

With historical failure of the individual trench caps, subsidence, and water in the trenches, it could be expected that leachate migration might ensue. IDPH began monitoring the Sheffield site in 1967, and when the opportunity arose in the form of a study proposed by the Illinois State Geological Survey (ISGS) to evaluate possible migration from the non-radioactive chemical waste site to the west, IDPH requested that the study ascertain whether chemical pollution from the "old" chemical site had entered state land and whether horizontal migration of radioactive waste occurred in the disposal trenches. In 1981, verifiable tritium was found offsite and off US Ecology property in Well 563, leading to the idea of the buffer zone. Tritium was migrating across the site in concentrations that were measurable but well below levels considered to be a threat to public health. As a result of the discovery of migrating tritium, geology and hydrology studies were performed by both the Illinois State Geological Survey (Heigold and Larson, 1985) and the United States Geological Survey (Foster et al., 1984).

IEMA Radiological Environmental Monitoring Program

The IEMA Radiological Environmental Monitoring Program for the Sheffield LLRW site is designed to evaluate the environment in general and site performance specifically by monitoring the movement, or lack of movement, of radionuclides, and subsequently determine any potential for public exposure. Program activities consist of sample collection and laboratory analysis, as well as review and analysis of the resulting data. Sample collection includes obtaining samples from both on-site locations (including the site and the buffer zone), and off-site locations (such as creeks or streams beyond the buffer zone and public water supplies in the area). On-site and off-site monitoring locations are shown in Appendix A.

Sample results are compared to applicable trigger or regulatory limits established in the Settlement Agreement, drinking water and groundwater standards, data collected from a "background" reference sampling location, as well as to historical data collected from the site. Drinking and groundwater standards are regulated by the USEPA and IEPA; IEMA's purpose for sampling private wells and public water supplies is solely to screen for the presence of radionuclides in drinking water. A summary of the sample collection, analysis, and results follows. Sample result tables are located in Appendix D and E.

Sampling and Monitoring Activities

On-Site Groundwater Sampling

Since the waste at the Sheffield facility is buried in shallow earthen trenches, the major emphasis of the environmental monitoring program involves the sampling and analysis of groundwater. IEMA monitors groundwater through wells installed around the disposal cap and in the buffer zone. On-site groundwater wells are purged and allowed to replenish prior to sampling. Samples are collected and analyzed quarterly from the following locations:

Well 150	Well 511	Well 512	Well 513	Well 515	Well 516	Well 525
Well 559	Well 563	Well 566	Well 567	Well 570	Well 574	Well 575
Well 577	Well 600	Well 602	Well 604	Well 606	Well 607	Well H
Well I	Well J	Well M	Well TB			

In addition to the routinely collected groundwater samples, which have been historically collected post-purge, in 2019 IEMA began testing pre-purge samples in order to determine the feasibility of eliminating the purging process at Sheffield. Since the purging of wells is a very labor-intensive process, understanding if it is a necessary component of the Sheffield sampling and monitoring plan is essential information. In order to determine if the purging of wells has an effect on the tritium and carbon-14 concentrations seen after analysis, IEMA began collecting a groundwater sample prior to the purging of a select group of wells. The determination of which wells to collect a pre-purge sample from was made based on historical data. As such, wells that consistently return results above the MDC were selected to ensure there would be sufficient data on which to base a decision. In order to collect a sufficient amount of data to base a decision on, pre-purge samples will continue to be collected in 2020.

On-Site Surface Water Sampling

The vast majority of groundwater in both major pathways from the disposal site eventually discharges into Trout Lake. Concentrations found at the different surface water sampling locations depend on the concentration of water from the springs, the amount of runoff from surrounding areas, the volume of lake discharge to the Lawson Creek tributary, and the amount of ice on the lake. Samples are collected and analyzed quarterly from the following locations:

Trout Lake A Trout Lake C Trout Lake D	South Creek
--	-------------

Off-Site Water Sampling

Off-site water samples are collected and analyzed to ensure that radionuclides originating from the Sheffield LLRW disposal site have not migrated into off-site water sources. Samples are collected quarterly from the following locations:

Lawson Creek* Lorenson Farm Creek

* Outflow from Trout Lake moves along an unnamed tributary of Lawson Creek into the creek itself. Lawson Creek monitoring results are important because they represent the only contaminated surface water flow path crossing the buffer zone boundary.

Public Water Supply Sampling

Although groundwater impacts to public water supplies are not expected, drinking water samples are taken to assure that there is no impact to local water supplies. Samples are collected quarterly from the following locations:

On-Site Lunchroom Tap Sheffield PWS Mineral PWS Neponset PWS Pencock Hill PWS

Sediment Sampling

Sediment samples are collected from three sampling locations during the second and third quarters of the year to determine whether contaminants previously in solution or suspension have settled out of a body of water and, therefore, cannot be identified through water sampling.

Vegetation Sampling

Vegetation samples are collected from two sampling locations during the second and third quarters of the year and analyzed for radionuclides that may have been transported from the environment and incorporated into or on plant tissue.

Air Sampling

Air particulate samples are collected by a continuously running low-volume air sampler located near the cap. Particulate filter samples are exchanged and analyzed weekly.

Direct Radiation Monitoring

Unlike the environmental samples described above, dosimeters do not provide information on what radionuclides are found in the environment. Instead, dosimeters provide a direct measurement of the total dose produced by all sources of gamma radiation, including naturally occurring radionuclides and cosmic rays. A network of thirteen optically stimulated luminescent dosimeters (OSLs) is arrayed around the Sheffield LLRW site, and are exchanged and analyzed quarterly.

Background Reference Sampling Locations

IEMA has established the environs of Sangchris Lake State Park, a cooling lake for a coal-fired power station near Kincaid, Illinois, as the background sampling location for water, sediment, and vegetation samples. Air monitoring stations in Springfield, Marion, and West Chicago, Illinois are used for background monitoring locations for air samples. To establish "background" radiation levels, samples are collected and analyzed utilizing the same procedures and methodologies used for the Sheffield LLRW site samples.

Results for background samples can be found in Appendix E.

Sampling and Monitoring Adjustments

The following adjustments were made to the Sheffield sample and monitoring plan in 2019:

- Well 559 was added to the sampling plan to provide data from a location within the plume and the disposal site. Large increases in concentrations seen in this well would provide an early indication of contamination moving into the buffer zone.
- With the addition of several wells in 2018 to provide a better indication of the plume approaching the buffer zone boundaries, the routine sampling locations were re-evaluated. As a result of this evaluation, three wells were removed from the sampling plan. Well 569 which is located north of the plume was eliminated due to the fact that Well 570 is located between it and the plume and has had no indication of contamination in that area. Well 572 was eliminated based on its location between the two plumes. Since both plumes are being monitored and the focus needs to be on what may potentially be getting off-site, monitoring that area is not a priority. Well 573 was removed due to the addition of any potential plume spread to the south and toward the buffer zone boundary.
- The Hosetter Lake sampling location was removed from the sampling plan due to its limited accessibility, location in relation to the contamination plume, and history of results indicating no contamination at this location.
- Results indicating increased levels of carbon-14 at Well 511 prompted the sampling of Wells 434 and 548 to help determine the extent of the carbon-14 contamination to the west of the disposal site.
- Sample Champ well pumps were placed onto all remaining routinely sampled wells that can accommodate the pumps. The pumps replace older, less reliable pumps and eliminate the need for manual bailing of the wells.
- Began sampling and analyzing pre-purge groundwater samples to determine if the long-time practice of purging wells prior to sampling has any effect on the overall results. Well purging is a time and labor-intensive practice that may possibly be eliminated if results indicate that it has no effect on the data being collected. Analysis of pre-purge samples will continue into 2020.

General Sampling and Monitoring Information

Every effort is made to collect all scheduled environmental samples; however, occasionally samples are unobtainable due to weather conditions, water levels, or obstructed access.

Laboratory Analysis

Sediment, vegetation, water, and air samples are analyzed by the IEMA Radiochemistry Laboratory located in Springfield, Illinois. The laboratory uses standard published radioanalytical procedures and participates in semi-annual proficiency testing programs through Environmental Resource Associates, an accredited proficiency testing provider, and the Department of Energy (DOE) Radiological and Environmental Science Laboratory's Mixed Analyte Performance Evaluation Program (MAPEP). A general description of each analysis performed is provided below.

Gross Alpha/Beta Analysis

Since the radionuclides in the disposal trenches emit either alpha or beta particles, water and air samples are analyzed for total alpha and beta radioactivity. This analysis provides a good method of screening samples for the presence of radioactive material.

- All air samples are analyzed for gross alpha/beta concentration. Samples are analyzed by gas proportional counting.
- Gross alpha/beta analysis is performed on water samples at least once per year from each routine sampling location. Samples are analyzed by liquid scintillation counting.

Tritium and Carbon-14 Analysis

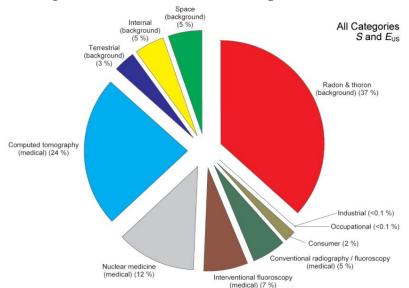
Tritium (H-3) and carbon-14 (C-14) emit low energy beta particles. Their beta energies are too low to be detected by ordinary analytical methodologies for evaluating gross beta activity. To measure the concentration of tritium and carbon-14, water samples are analyzed using liquid scintillation counting, a technique that is capable of measuring radioactive emissions at very low energies and very low concentrations.

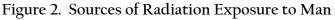
- All water samples collected are analyzed for tritium concentration
- *C*-14 analysis is performed on water samples at least once per year from each routine sampling location.

Total Strontium Analysis

Strontium is easily masked by other radionuclides, including those which are naturally occurring. Therefore, samples being analyzed for Total Strontium undergo preliminary chemical separation so that the strontium may be isolated for analysis. Total Strontium analysis is performed by isolating the strontium from the matrix using a chemical separation method and then counting the samples using a gas proportional counter.

Total Strontium analysis is performed on water samples at least once per year from each routine sampling location.


Gamma Spectroscopy Analysis


Gamma emitting radionuclides (Americium-241 (Am-241), Cobalt-60 (Co-60), and Cesium-137 (Cs-137)) are analyzed using a high-purity germanium detector in a process called gamma spectroscopy, which allows the identification of individual radionuclides.

- Gamma spectroscopy analysis is performed on water samples at least once per year from each routine sampling location.
- Gamma spectroscopy analysis is performed on all vegetation and sediment samples.

Optically Stimulated Luminescence Analysis

OSLs are analyzed by IEMA staff using a Landauer In Light System Auto Reader. Results found in Appendix D-Table D.17 are expressed as the average milliroentgen (mR) per quarter and are also calculated to the approximate mR per year that would have been accrued by an individual at that location for an entire year. The ambient gamma results can be compared to the average annual radiation exposure to an individual of 620 mR/year from various sources (according to the 2009 National Council on Radiation Protection's (NCRP) Report 160). Approximately 8% (49.6 mR/year) of that exposure is from Terrestrial and Cosmic radiation (background radiation), Figure 2.

Reprinted with permission of the National Council on Radiation Protection and Measurements. (http://NCRPpublications.org)

Minimum Detectable Concentration (MDC)

All analytical methods have limitations: amounts that are just too small to be detected. Each measurement technique has its own minimum detectable concentration (MDC) which is the smallest quantity of radioactive material per unit volume that can be detected reliably. An MDC is a function of the limitations of the nuclear counting equipment, the volume/weight of sample used, chemical separation techniques, and ambient natural background radiation present in the laboratory. The MDC is an "a priori" measure of these limitations – an estimate of the lower limit of detection. It is defined as the smallest quantity that an analytical method has 95% likelihood of detecting. For example, the MDC for IEMA's method for tritium in water is 200 pCi/L. Given a sample with a tritium concentration of 200 pCi/L, tritium would be detected approximately 95 times out of 100. Samples with concentrations less than 200 pCi/L could be more likely to be detected, approaching 100% as concentrations increase.

Analysis Adjustments

The following adjustments were made to the Sheffield sample and monitoring plan in 2019:

• Pre-purge samples collected as part of the purge/no-purge study were analyzed for tritium and carbon-14.

Radiological Environmental Sampling and Monitoring Results

On-Site Groundwater Sampling Results

Gross Alpha/Beta Results

Gross alpha/beta results for on-site groundwater samples are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.1.

Results indicate that several sampling locations had gross alpha and/or gross beta concentrations above the established MDC. Results above MDC at these locations are consistent with historical data and are expected due to the sampling locations proximity to the known contamination plume.

Tritium Results

Tritium results for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Tables D.3 (pre) and D.4 (post).

Results indicate that wells sampled within the Northeast and Southeast pathways had tritium concentrations above the established MDCs. Concentrations above MDC are expected for these sampling locations due to the flow of water through the pathways away from the disposal site and are consistent with historical data. The general trend in tritium concentrations found on-site is decreasing. However, results from samples taken in 2019 at Well 600 were above the MDC and show a trend of increasing tritium concentration. Results from Well H and Well TB which had been trending higher over the last 3 years, indicated that tritium concentrations at both locations gradually declined throughout 2019.

In 2018, due to the continued increase in tritium concentrations at Well H, IEMA re-evaluated its sampling plan and added seven new wells to its routine sampling activities. Wells I, J, M, 566, 604, 606, and 607 were added to ensure that the extent of the plume to the south and southeast is captured. Of the seven new routinely monitored wells added to the southern and southeastern extent of the contamination plume, only one well saw results in 2019 above the established MDC. The tritium concentrations found at Well 566 were consistently above the established MDC in 2019.

Tritium results for all other on-site groundwater sampling locations were consistent with historical data. All 2019 results were below the 3,000,000 pCi/L trigger limit set in the Agreed Order.

Appendix B provides a graphical depiction of tritium (H-3) results from on-site groundwater sampling locations. The graphs include historical results for those sites, which are included to display the overall trends of tritium concentration over time. Additionally, the graphs show the MDC and the highest recorded tritium concentration as a percentage of the samples respective regulatory limit (3,000,000 pCi/L).

Carbon-14 Results

Carbon-14 results for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Tables D.6 (pre) and D.7 (post).

Results indicate the presence of C-14 in concentrations above the established MDC in several on-site wells within the known contamination plumes along the Northeast or Southeast groundwater pathways and on or

17 of 68| IEMA | Division of Nuclear SafetySheffield Radiological Environmental Monitoring Report|

near the disposal site cap. Concentrations of C-14 above the set MDC in these areas are known to exist and are consistent with historical data.

Well 511, which is located outside of the major contamination pathways but near the cap, has seen C-14 results above the set MDC since 2013. Since this well is not in the major pathways, additional sampling was performed in 2019 at this location and sampling locations near this well (Wells 434 and 548) to determine the extent of the C-14 migration and to monitor the trend in concentration. Sample results for the additional wells were below the established MDC. Well 511 has seen a gradual decrease in concentration since 2013. IEMA will continue to monitor and trend the C-14 concentration found at this specific location.

Carbon-14 results for all other on-site groundwater sampling locations were consistent with historical data and with data collected from the background reference area. All 2019 results were below the 800,000 pCi/L trigger limit set in the Agreed Order.

Total Strontium Results

Total Strontium results for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.9.

Results indicate no concentrations above the established MDCs.

Gamma Spectrometry Results

Gamma spectrometry results (Am-241, Co-60, and Cs-137) for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.11.

Results indicate no concentrations above the established MDCs.

On-Site Surface Water Sampling Results

Gross Alpha/Beta Results

Gross alpha/beta results for on-site surface water samples are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.1.

Results indicate that all three Trout Lake sampling locations had gross beta concentrations above the set MDCs; however, occasional sample results with gross alpha and/or gross beta concentrations above the MDC are consistent with historical data and data collected from the background reference area.

Tritium Results

Tritium results for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.4.

Results indicate tritium concentrations above the set MDC at all Trout Lake sampling locations. Concentrations above the MDC are expected at these sampling locations due to the flow of water through the groundwater pathways into Trout Lake and are consistent with historical data. South Creek sampling results

 18 of 68
 | IEMA | Division of Nuclear Safety

 Sheffield Radiological Environmental Monitoring Report
 | Calend

were below the MDC. All on-site surface water results were below the 3,000,000 pCi/L trigger limit set in the Agreed Order.

Appendix B provides a graphical depiction of tritium (H-3) results from on-site water sampling locations. The graphs display historical results for each sampling location and their overall trend in tritium concentration over time. Additionally, the graphs show the MDC and the highest recorded tritium concentration as a percentage of the samples respective regulatory limit (3,000,000 pCi/L).

Carbon-14 Results

Carbon-14 results for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.7.

Results indicate no concentrations above the established MDCs.

Total Strontium Results

Total Strontium results for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.9.

Results indicate no concentrations above the established MDCs.

Gamma Spectroscopy Results

Gamma spectroscopy results (Am-241, Co-60, and Cs-137) for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.11.

Results indicate no concentrations above the established MDCs.

Off-Site Water Sampling Results

Gross Alpha/Beta Results

Gross alpha/beta results for off-site water samples are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.2.

Results above the MDC for gross alpha and/or gross beta were seen from Mineral PWS, Neponset PWS, the Lunchroom Tap, and Pencock Hill PWS. Mineral and Neponset public water systems are supplied through groundwater aquifers, the Lunchroom Tap and Pencock Hill through a private groundwater well. There are no treatment technologies for the removal of radium used at any of these locations. Therefore, it is likely that the increase in gross alpha/beta concentration is a result of natural radium in the water supply.

Gross beta results slightly above the set MDC were also seen at Lawson and Lorenson Creeks. Gross beta results above the established MDC, although not consistently, have been seen at these locations in the past and are comparable to the concentrations seen occasionally at the background reference locations.

19 of 68| IEMA | Division of Nuclear SafetySheffield Radiological Environmental Monitoring Report

Tritium Results

Tritium results for off-site water samples are compared to historical data, data collected from the background reference location, the trigger limits established in the Agreed Order, as well as to drinking water and groundwater standards established by the U.S. Environmental Protection Agency (USEPA) and Illinois Environmental Protection Agency's (IEPA). The US EPA drinking water standard (National Primary Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels, 2000) and the IEPA groundwater standard (Groundwater Quality Standards for Class I: Potable Resource Groundwater, 2013) both set the limit for tritium in groundwater at 20,000 pCi/L. Analytical results are shown in Table D.5.

Appendix C provides a graphical depiction of tritium (H-3) results from off-site water sampling locations. The graphs include historical results for those sites, which are included to display the overall trends of tritium concentration over time. Additionally, the graphs show the MDC and the highest recorded tritium concentration as a percentage of the samples respective regulatory limit (20,000 pCi/L).

Results show no concentrations above the established MDC.

Carbon-14 Results

Carbon-14 results for off-site water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.8.

Results indicate no concentrations above the established MDCs.

Total Strontium Results

Total Strontium results for off-site water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order. Analytical results are shown in Table D.10.

Results indicate no concentrations above the established MDCs.

Gamma Results

Gamma spectroscopy results (Am-241, Co-60, and Cs-137) for off-site water samples are compared to historical data, data collected from the background reference location, as well as to the trigger limits established in the Agreed Order Analytical results are shown in Table D.12.

Results indicate no concentrations above the established MDCs.

Sediment Sampling Results

Sediment sample results are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Tables D.13 and D.14.

Results from sediment sampling indicate the presence of Cesium-137 at levels equal to the established MDC. Similar concentrations of Cs-137 have historically been seen in environmental sediment samples as a result of atmospheric nuclear weapons testing. The results are comparable to the concentrations found at the background reference location.

Vegetation Sampling Results

Vegetation sample results are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.15.

Results indicate no concentrations above the established MDCs.

Air Sampling Results

Air sampling results are compared to historical data collected from the site and to sample data collected from the background reference locations. Analytical results are shown in Table D.16.

Results are consistent with historical data and data collected from the background reference area.

Direct Radiation Results

OSL results are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.17.

Results are consistent with historical data and data collected from the background reference area.

Results Interpretation or Limit Adjustments

The following adjustments were made to how the Sheffield sample results were interpreted in 2019:

٠

A West Chicago air particulate sampling is location is now being used for background comparison purposes. West Chicago air samples, although collected and analyzed for many years, were not suitable for background comparisons due to the samplers' proximity to the Kerr-McGee Rare Earths site. After an extensive decommissioning and decontamination process at the Kerr-McGee site, samples collected from the West Chicago location are no longer potentially impacted from site operations and can be included for background comparison purposes.

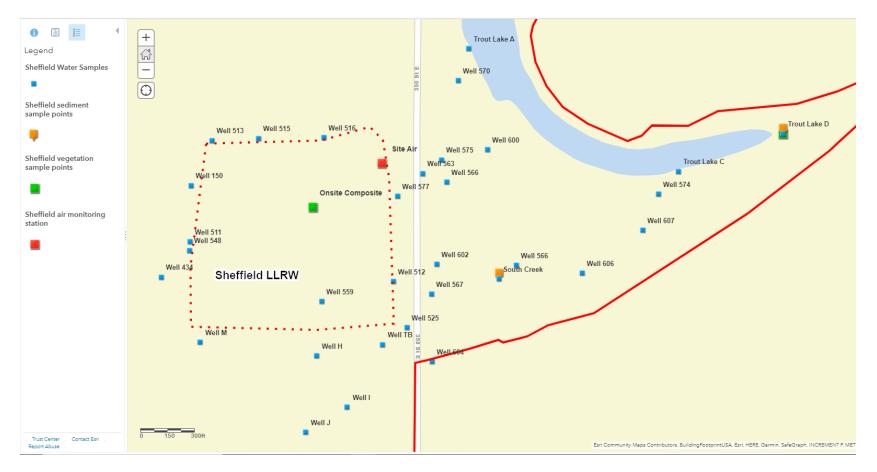
Summary

Due to the original design of the disposal site, the flow of groundwater away from the site, and the radionuclides disposed of; the presence of radiological contamination at the disposal site and within the buffer zone is known to exist and is expected. In 2019, contaminants from the site were observed in groundwater collected on-site, as well as within groundwater and surface water collected from the buffer zone. Detectable concentrations of tritium were observed at many on-site sampling locations, with wells located along the groundwater pathways containing the highest concentrations. Carbon-14 concentrations above the MDC were detected within some on-site monitoring wells. Gross alpha and gross beta concentrations above the established MDC were seen intermittently in water samples but were consistent with historical data. All 2019 water sample results were well below the trigger limits set forth in the Settlement Agreement of 1988 and listed in Table 2 of this report. Results from vegetation sampling indicate no radionuclides attributable to the LLRW disposal site. Sediment samples show only concentrations of radionuclides attributable to fallout from atmospheric nuclear weapons testing several decades ago.

No contaminants attributable to the LLRW site were found within samples collected from off-site locations. Gross alpha and gross beta concentrations above the established MDC were seen at some off-site locations. However, the elevated concentrations are likely due to natural radium in the groundwater supply. Tritium, Carbon-14, Total Strontium, and gamma concentration in off-site samples were all below the set MDCs.


Results from air sampling were similar to those seen at background air sampling locations in Springfield, Marion, and West Chicago, Illinois. Direct radiation measurements are comparable to the levels found at the background reference location established by IEMA and are similar to historical levels found at the LLRW site.

In 2019, with the exception of tritium concentrations found in on-site groundwater samples at Well 600, Well H and Well TB, all results from IEMA's radiological environmental monitoring program at the Sheffield LLRW site were consistent with historical data and expected contamination levels. Although concentrations of tritium in groundwater sampled at Well H and TB had been trending upward over the previous 3 years, 2019 data indicates a decline in tritium concentrations for both locations. Well 600 tritium concentrations, which began trending higher in second quarter of 2018, continued to trend higher throughout 2019. IEMA will continue to monitor and trend these specific locations to further assess these changes and will make adjustments to the sampling plan as necessary.


Results from the sampling and monitoring conducted in 2019 indicate that the contamination plume has remained within the major groundwater pathways described in the Hydrology of the Sheffield LLRW Disposal Site section of this report and that contamination is contained within the boundaries of the Disposal Site and the Buffer Zone.

IEMA's Division of Nuclear Safety will continue to monitor the environs of, and evaluate its radiological environmental monitoring program for, the Sheffield LLRW site to ensure that the site is performing as expected and that the citizens and environment of Illinois are protected from the potentially harmful effects of radioactive materials buried at the site.

<u>Appendix A</u> Maps of IEMA Monitoring Locations

Figure A-2. Sheffield On-Site Sampling Locations

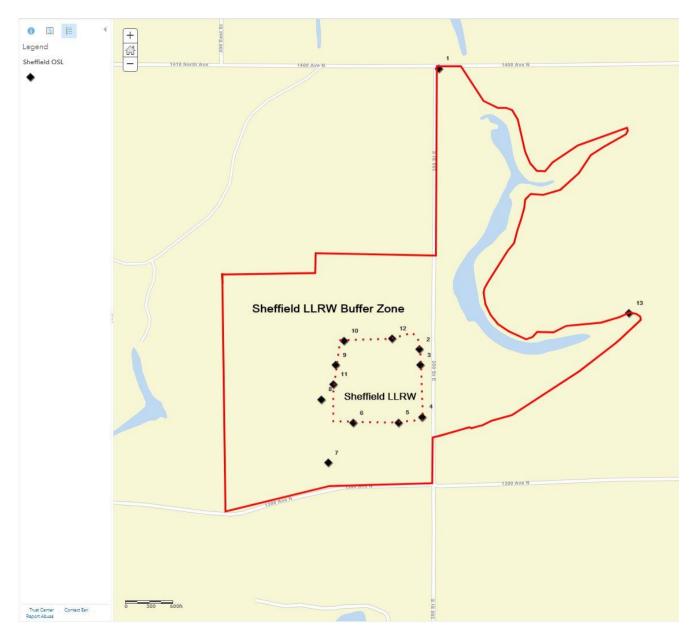


Figure A-3. Sheffield OSL Monitoring Locations

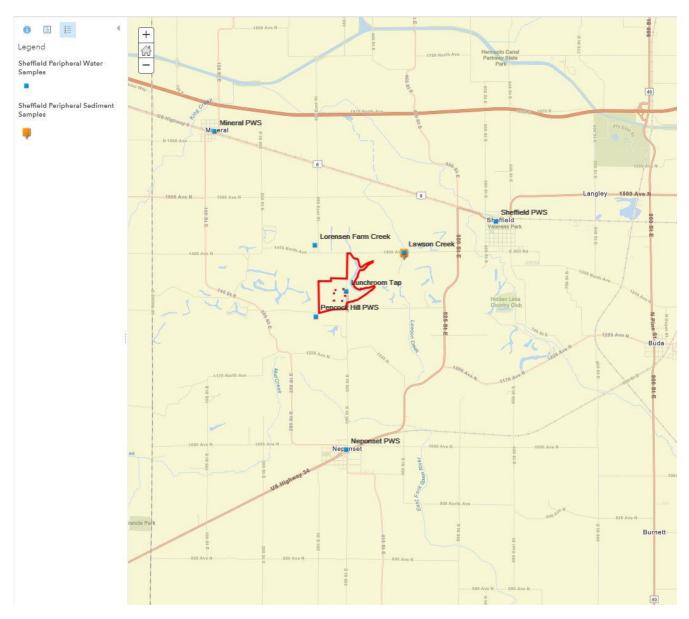


Figure A-4. Sheffield Off-Site Monitoring Locations

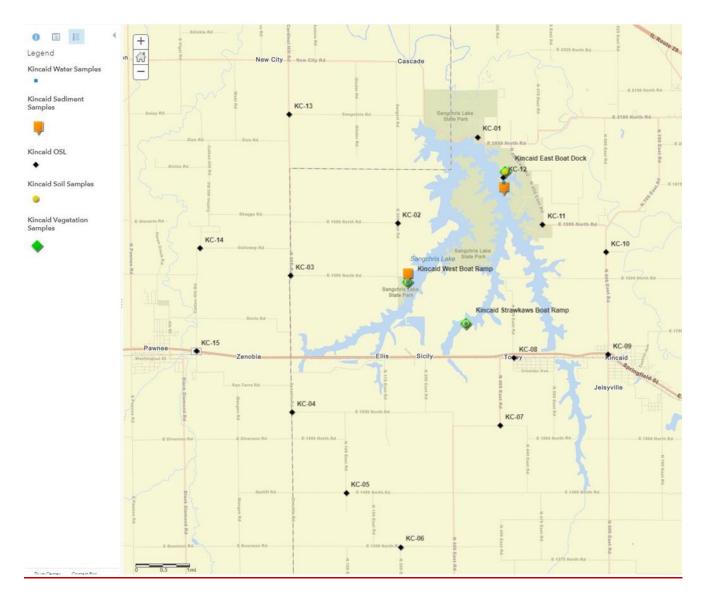
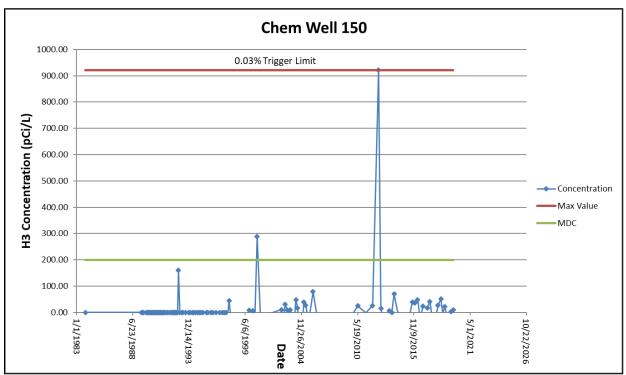
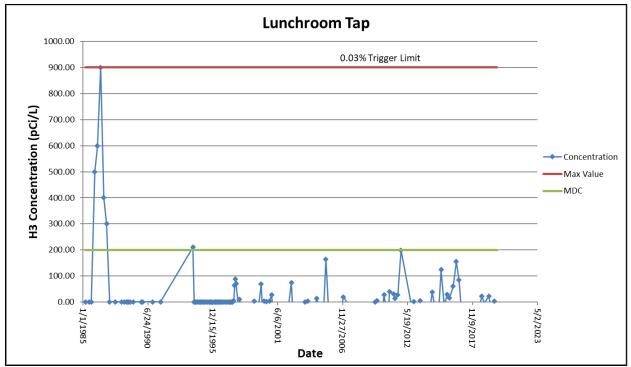
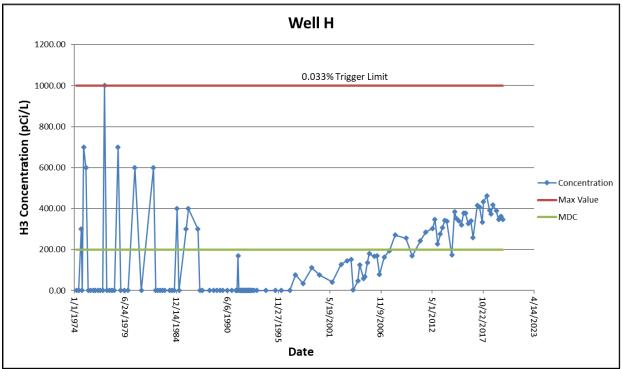
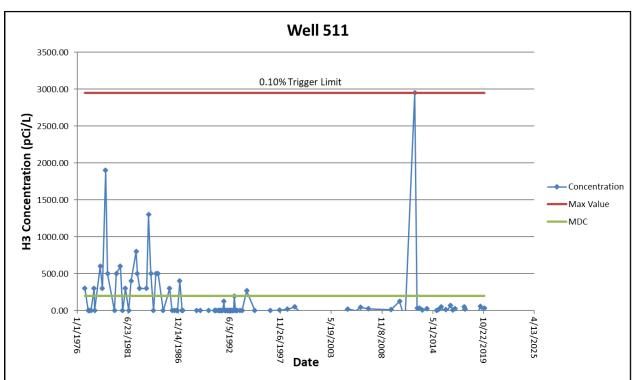
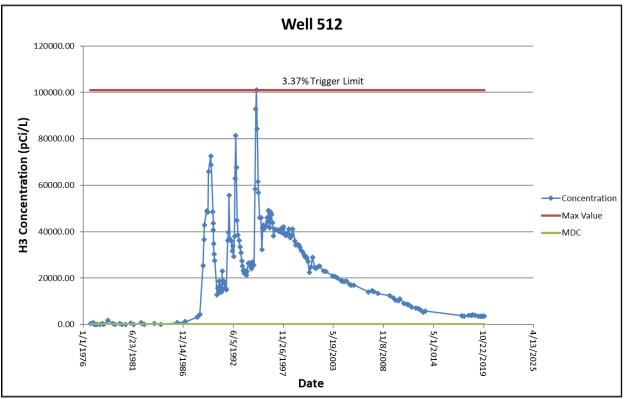
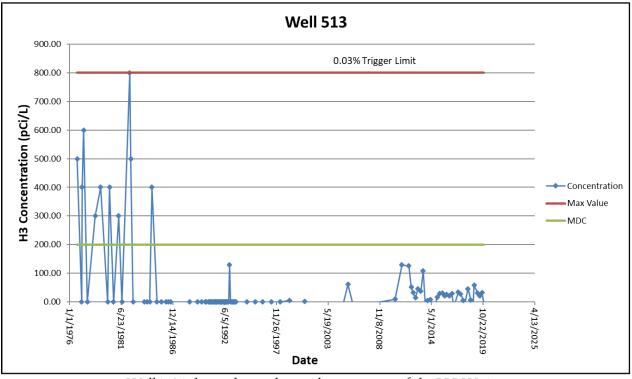




Figure A-5. Sangchris Lake State Park near Kincaid, Illinois


<u>Appendix B</u> On-Site Tritium (H-3) Water Sample Result Graphs

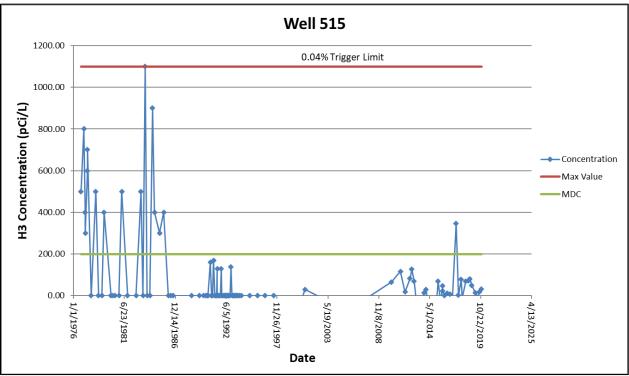

Chem Well 150 is located on the western edge of the Buffer Zone, close to the Chemical Waste site.


The lunchroom is not a well, but an on-site location fed by a local water supply.

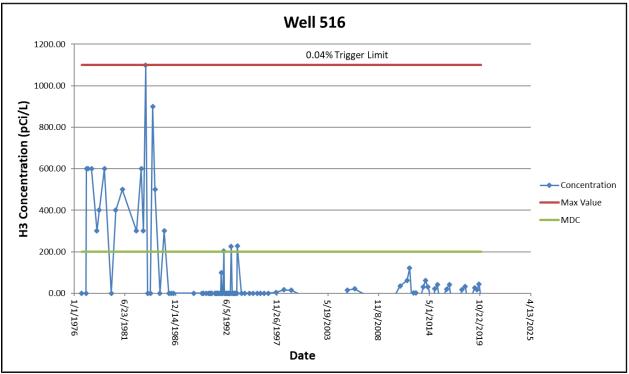

Well H is immediately to the south of the LLRW site.

Well 511 is located immediately to the west of the LLRW site.

Well 512 is located south and east of the LLRW site and is in the Southeast Pathway. Sampling at Well 512 resumed in 2017 *MDC is 200 pCi/L, not visible at this scale.

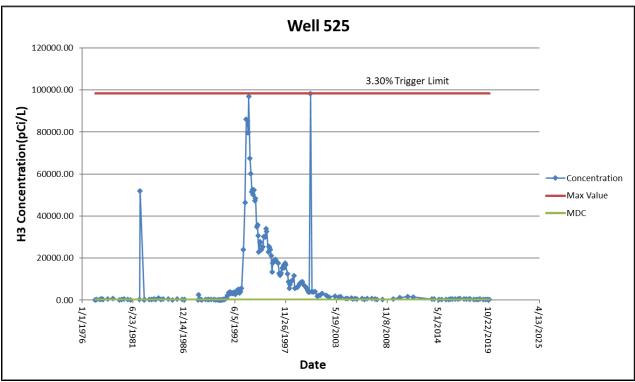


Well 513 is located near the northwest corner of the LLRW site.

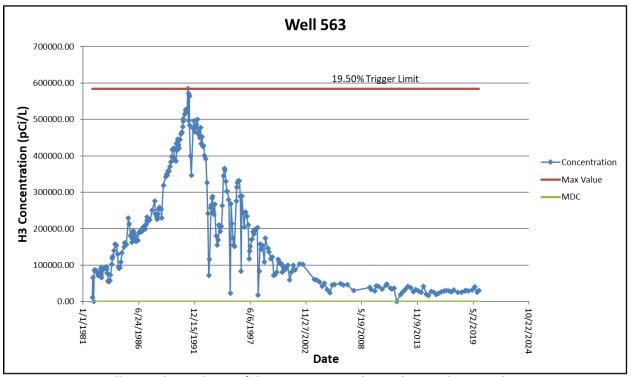

| IEMA | Division of Nuclear Safety

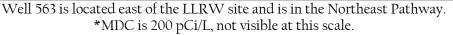
30 of 68

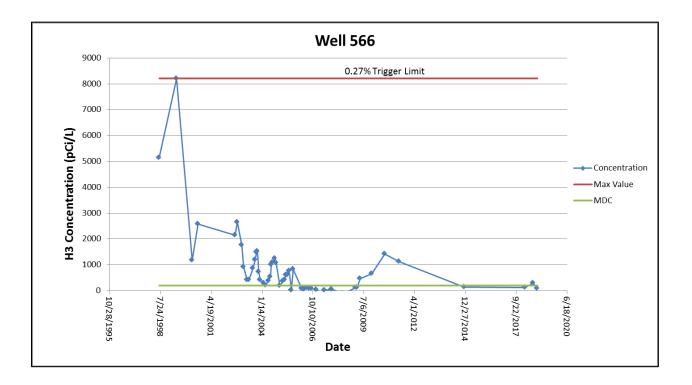
Sheffield Radiological Environmental Monitoring Report

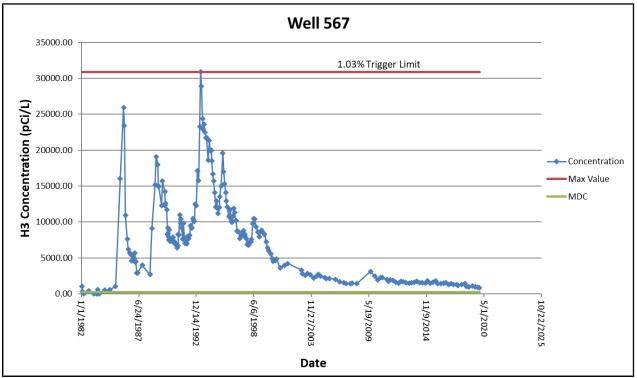


Well 515 is located along the north edge of the LLRW site.

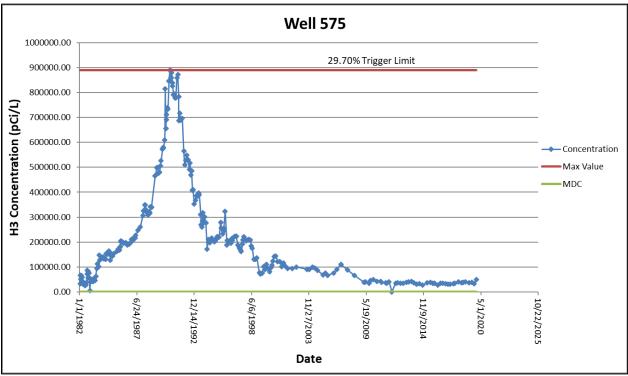



Well 516 is located along the north edge of the LLRW site.

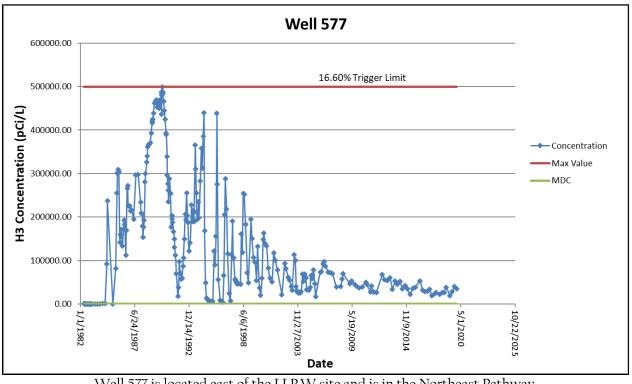

31 of 68



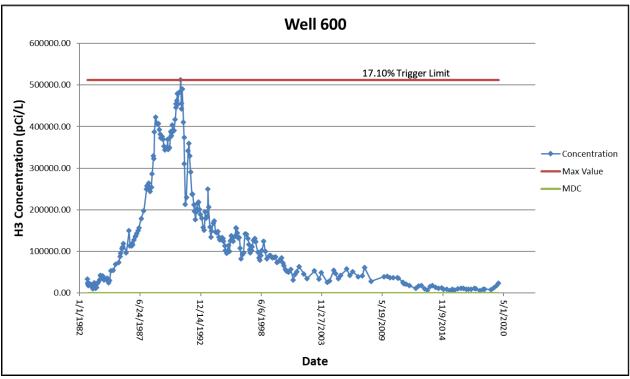
Well 525 is located south and east of the LLRW site and is in the Southeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

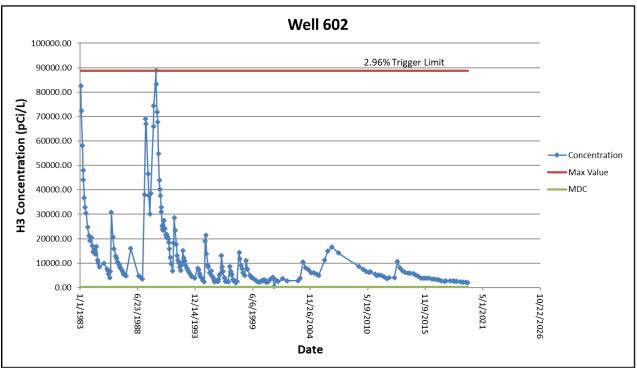


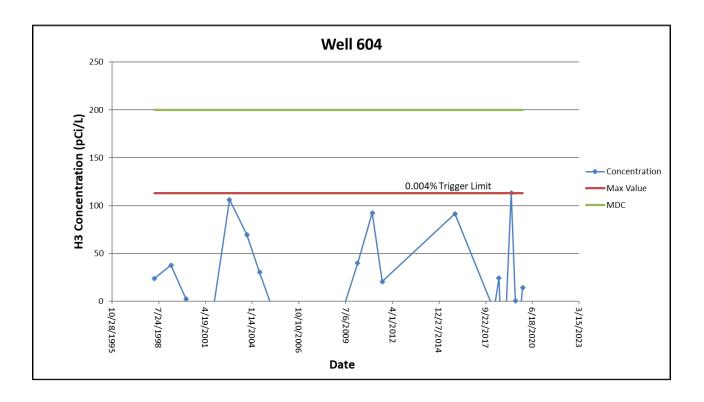
Well 567 is located east of the LLRW site and is in the Southeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

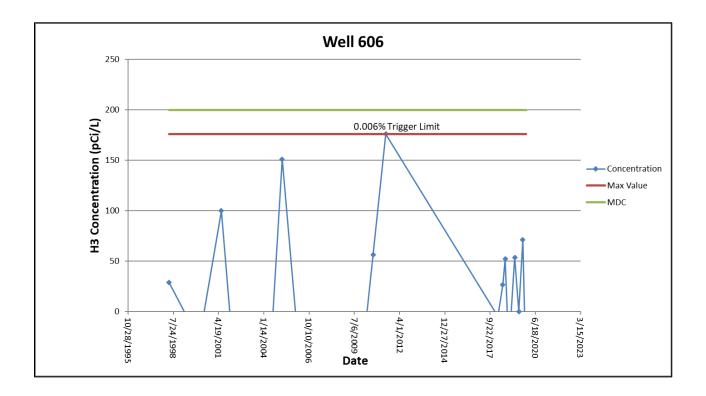

| IEMA | Division of Nuclear Safety Sheffield Radiological Environmental Monitoring Report

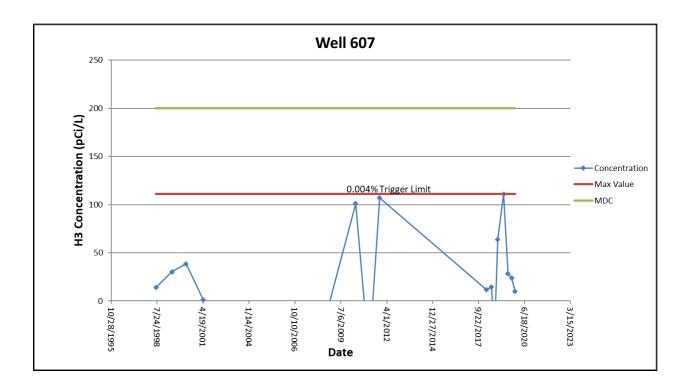
33 of 68

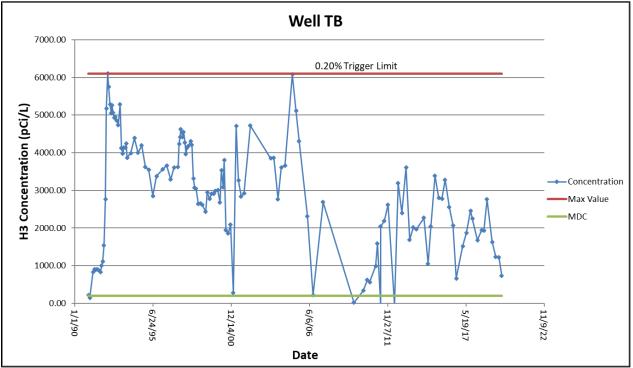

| Calendar Year 2019


Well 575 is located east of the LLRW site and is in the Northeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

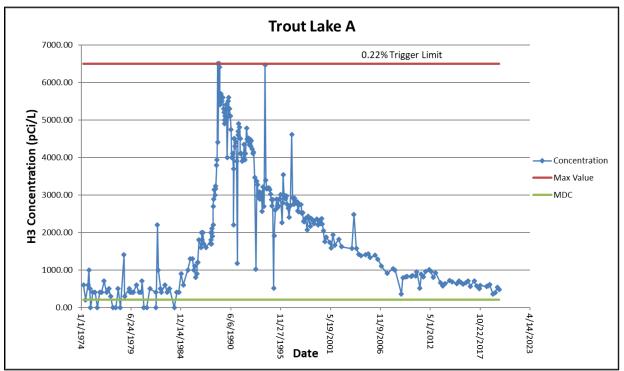

Well 577 is located east of the LLRW site and is in the Northeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

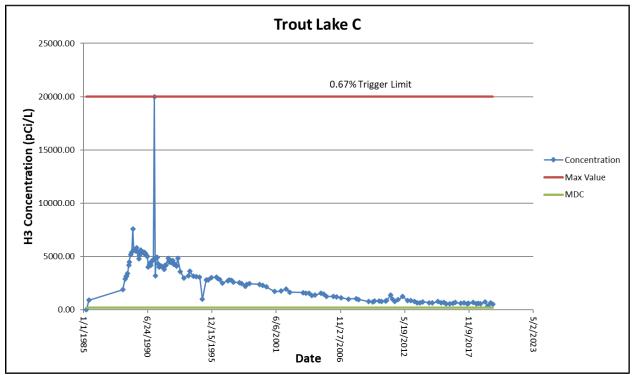


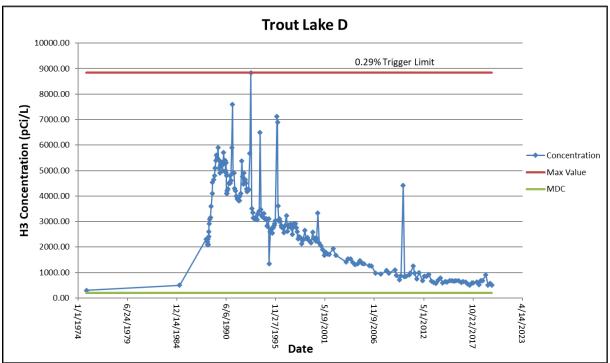

Well 600 is located east of the LLRW site and is in the Northeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

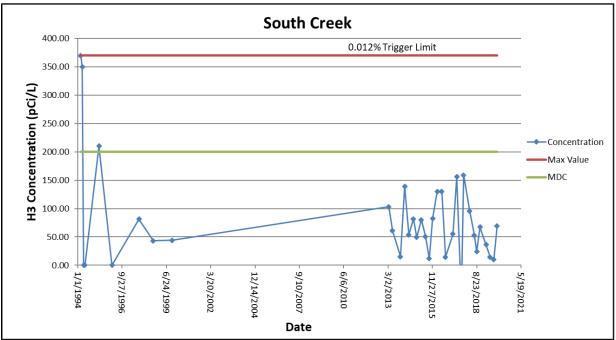


Well 602 is located east of the LLRW site and is in the Southeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

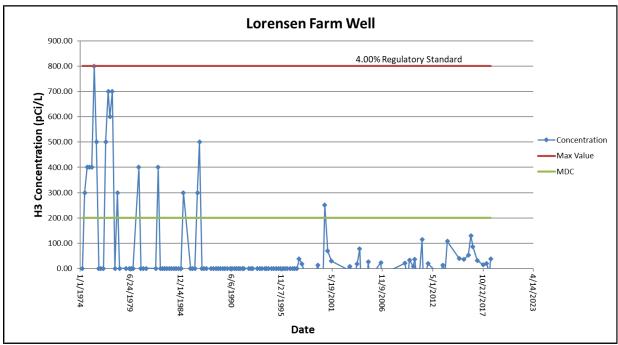




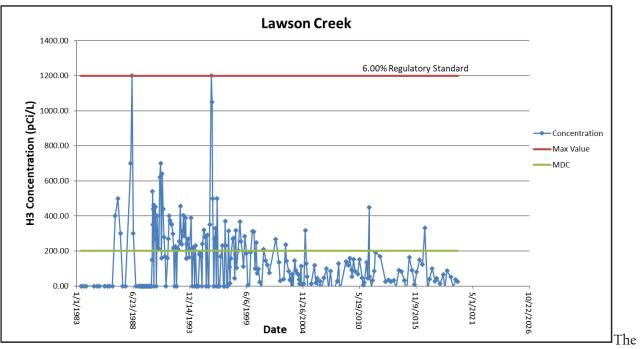

Well TB is located south of the LLRW site and is in the Southeast Pathway.


Trout Lake A is located on the north western edge of Trout Lake.

Trout Lake C is located approximately in the middle of Trout Lake. *MDC is 200 pCi/L, not visible at this scale.



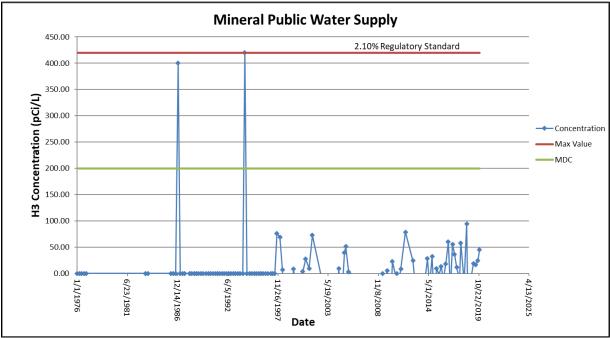
Trout Lake D is located on the eastern end of Trout Lake.



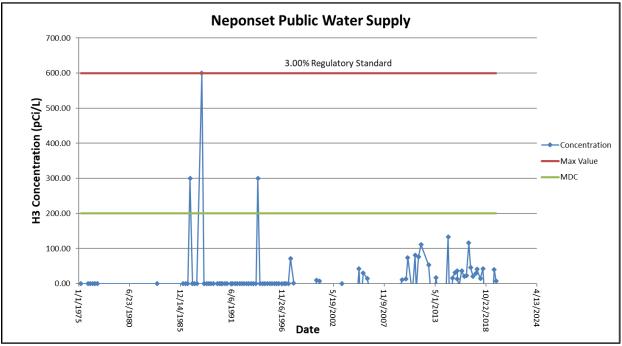
South Creek is located to the South of the site after confluence with cap runoff.

<u>Appendix C</u> Off-Site Tritium (H-3) Water Sample Result Graphs

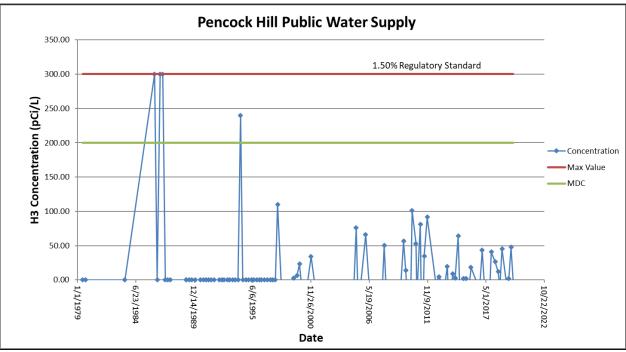
L. Farm Well is located north and slightly west of the LLRW site.

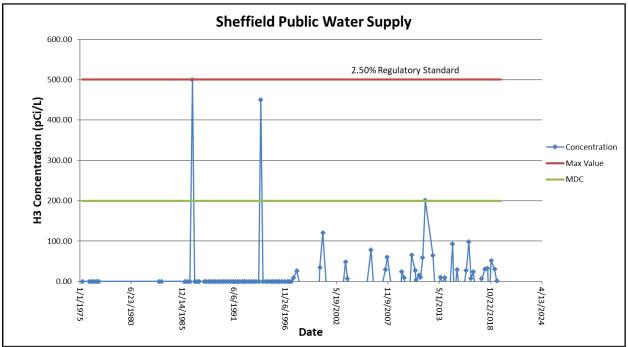


Lawson Creek sampling point is located east and north of the LLRW site.


| IEMA | Division of Nuclear Safety

40 of 68


Sheffield Radiological Environmental Monitoring Report


The Mineral PWS sampling point is located northeast of the LLRW site.

The Neponset PWS sampling point is located south of the LLRW site.

The Pencock Hill PWS sample location is south of the LLRW site.

The Sheffield PWS sampling location is northwest of the LLRW site.

<u>Appendix D</u> Sheffield Sample Results

Table D.1 Gross Alpha/Beta Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location A		ha	Be	eta	Location	Alp	oha	Be	eta	Location	Alp	ha	Be	eta
Date	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC
South Creek					Well 525					Well 602				
3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td>5.8</td><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td>5.8</td><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.8	9/11/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td>5.8</td><td>3.8</td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td>5.8</td><td>3.8</td></mdc<></td></mdc<>	3.8	6/20/2019	<mdc< td=""><td>2.2</td><td>5.8</td><td>3.8</td></mdc<>	2.2	5.8	3.8
Trout Lake A					Well 559					Well 604				
11/21/2019	2.7	2.2	8.6	3.8	6/20/2019	<mdc< td=""><td>2.2</td><td>5.6</td><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	2.2	5.6	3.8	3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
Trout Lake C					Well 563					9/11/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
9/11/2019	<mdc< td=""><td>2.2</td><td>9.9</td><td>3.8</td><td>6/20/2019</td><td>4.4</td><td>2.2</td><td>7.8</td><td>3.8</td><td>Well 606</td><td></td><td></td><td></td><td></td></mdc<>	2.2	9.9	3.8	6/20/2019	4.4	2.2	7.8	3.8	Well 606				
Trout Lake D					Well 566					3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
6/20/2019	<mdc< td=""><td>2.2</td><td>7.2</td><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	7.2	3.8	3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	3.8	9/11/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
Well 150					11/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>Well 607</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>Well 607</td><td></td><td></td><td></td><td></td></mdc<>	3.8	Well 607				
9/11/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>Well 567</td><td></td><td></td><td></td><td></td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>Well 567</td><td></td><td></td><td></td><td></td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	3.8	Well 567					3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
Well 511					11/21/2019	<mdc< td=""><td>2.2</td><td>4.3</td><td>3.8</td><td>11/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	2.2	4.3	3.8	11/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
11/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>Well 570</td><td></td><td></td><td></td><td></td><td>Well H</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>Well 570</td><td></td><td></td><td></td><td></td><td>Well H</td><td></td><td></td><td></td><td></td></mdc<>	3.8	Well 570					Well H				
Well 512					3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	3.8	6/20/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
11/21/2019	<mdc< td=""><td>2.2</td><td>3.9</td><td>3.8</td><td>Well 574</td><td></td><td></td><td></td><td></td><td>Well I</td><td></td><td></td><td></td><td></td></mdc<>	2.2	3.9	3.8	Well 574					Well I				
Well 513					6/20/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	3.8	3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
6/20/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.8	9/11/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>6/20/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	3.8	6/20/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
Well 515					Well 575					Well J				
3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td>4.2</td><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>9/11/2019</td><td><mdc< td=""><td>2.2</td><td>4.2</td><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.8	9/11/2019	<mdc< td=""><td>2.2</td><td>4.2</td><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	2.2	4.2	3.8	3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
Well 516					Well 577					6/20/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
11/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td>6.0</td><td>3.8</td><td>Well M</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td><td>3/21/2019</td><td><mdc< td=""><td>2.2</td><td>6.0</td><td>3.8</td><td>Well M</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.8	3/21/2019	<mdc< td=""><td>2.2</td><td>6.0</td><td>3.8</td><td>Well M</td><td></td><td></td><td></td><td></td></mdc<>	2.2	6.0	3.8	Well M				
Well TB					Well 600					9/11/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8
3/21/2019	<mdc< td=""><td>2.2</td><td>4.6</td><td>3.8</td><td>11/21/2019</td><td><mdc< td=""><td>2.2</td><td>5.4</td><td>3.8</td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	2.2	4.6	3.8	11/21/2019	<mdc< td=""><td>2.2</td><td>5.4</td><td>3.8</td><td></td><td></td><td></td><td></td><td></td></mdc<>	2.2	5.4	3.8					

Location	Alp	ha	Be	ta
Date	Result	MDC	Result	MDC
Lawson Creek				
11/21/2019	<mdc< td=""><td>2.2</td><td>5.0</td><td>3.8</td></mdc<>	2.2	5.0	3.8
Lorensen Farm	Creek			
6/20/2019	<mdc< td=""><td>2.2</td><td>4.5</td><td>3.8</td></mdc<>	2.2	4.5	3.8
Lunchroom Tap				
3/21/2019	3.2	2.2	5.6	3.8
Mineral PWS				
3/21/2019	5.5	2.2	8.5	3.8
6/20/2019	4.3	2.2	7.1	3.8
9/11/2019	4.4	2.2	7.6	3.8
11/21/2019	4.2	2.2	8.1	3.8
Neponset PWS				
9/11/2019	9.1	2.2	13.1	3.8
Pencock Hill PW	IS			
9/11/2019	4.4	2.2	8.1	3.8
Sheffield PWS				
3/21/2019	<mdc< td=""><td>2.2</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	2.2	<mdc< td=""><td>3.8</td></mdc<>	3.8

Table D.2 Gross Alpha/Beta Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Н	-3
Date	Result	MDC
Well 511		
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Well 512		
3/20/2019	3380	200
Well 525		
3/20/2019	274	200
Well 563		
3/20/2019	31000	200
6/20/2019	40700	200
9/11/2019	25600	200
11/21/2019	29500	200
Well 566		
3/20/2019	322	200
Well 567		
3/20/2019	1120	200
Well 570		
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Well 574		
3/20/2019	<mdc< td=""><td>200</td></mdc<>	200

Table D.3 Tritium (H-3) Results for On-Site Water Samples (Pre-Purge)
Results are in picocuries per Liter (pCi/L)

Location	Н	-3
Date	Result	MDC
Well 575		
3/20/2019	33200	200
6/20/2019	37600	200
9/11/2019	32700	200
11/21/2019	47200	200
Well 577		
3/20/2019	19800	200
6/20/2019	23300	200
9/11/2019	40300	200
11/21/2019	34000	200
Well 600		
3/20/2019	8100	200
Well 602		
3/20/2019	2220	200
Well H		
3/20/2019	386	200
Well TB		
6/20/2019	1470	200
9/11/2019	1110	200
11/21/2019	1010	200

Location	H	-3	Location	H	3
Date	Result	MDC	Date	Result	MC
South Creek			Well 513		
3/21/2019	<mdc< td=""><td>200</td><td>3/21/2019</td><td><mdc< td=""><td>20</td></mdc<></td></mdc<>	200	3/21/2019	<mdc< td=""><td>20</td></mdc<>	20
6/20/2019	<mdc< td=""><td>200</td><td>6/20/2019</td><td><mdc< td=""><td>20</td></mdc<></td></mdc<>	200	6/20/2019	<mdc< td=""><td>20</td></mdc<>	20
9/11/2019	<mdc< td=""><td>200</td><td>9/11/2019</td><td><mdc< td=""><td>20</td></mdc<></td></mdc<>	200	9/11/2019	<mdc< td=""><td>20</td></mdc<>	20
11/21/2019	<mdc< td=""><td>200</td><td>11/21/2019</td><td><mdc< td=""><td>20</td></mdc<></td></mdc<>	200	11/21/2019	<mdc< td=""><td>20</td></mdc<>	20
Trout Lake A			Well 515		
3/21/2019	353	200	3/21/2019	<mdc< td=""><td>20</td></mdc<>	20
6/20/2019	395	200	6/20/2019	<mdc< td=""><td>20</td></mdc<>	20
9/11/2019	541	200	9/11/2019	<mdc< td=""><td>20</td></mdc<>	20
11/21/2019	478	200	11/21/2019	<mdc< td=""><td>20</td></mdc<>	20
Trout Lake C			Well 516		
3/21/2019	752	200	3/21/2019	<mdc< td=""><td>20</td></mdc<>	20
6/20/2019	346	200	6/20/2019	<mdc< td=""><td>20</td></mdc<>	20
9/11/2019	659	200	9/11/2019	<mdc< td=""><td>20</td></mdc<>	20
11/21/2019	529	200	11/21/2019	<mdc< td=""><td>20</td></mdc<>	20
Trout Lake D			Well 525		
3/21/2019	901	200	3/21/2019	372	20
6/20/2019	495	200	6/20/2019	271	20
9/11/2019	573	200	9/11/2019	280	20
11/21/2019	497	200	11/21/2019	300	20
Well 150			Well 548		
3/21/2019	<mdc< td=""><td>200</td><td>3/21/2019</td><td><mdc< td=""><td>20</td></mdc<></td></mdc<>	200	3/21/2019	<mdc< td=""><td>20</td></mdc<>	20
6/20/2019	<mdc< td=""><td>200</td><td>6/20/2019</td><td><mdc< td=""><td>20</td></mdc<></td></mdc<>	200	6/20/2019	<mdc< td=""><td>20</td></mdc<>	20
9/11/2019	<mdc< td=""><td>200</td><td>Well 559</td><td></td><td></td></mdc<>	200	Well 559		
Well 434			3/21/2019	25100	20
3/21/2019	<mdc< td=""><td>200</td><td>6/20/2019</td><td>23400</td><td>20</td></mdc<>	200	6/20/2019	23400	20
Well 511			9/11/2019	22900	20
3/21/2019	<mdc< td=""><td>200</td><td>11/21/2019</td><td>22000</td><td>20</td></mdc<>	200	11/21/2019	22000	20
6/20/2019	<mdc< td=""><td>200</td><td>Well 563</td><td></td><td></td></mdc<>	200	Well 563		
9/19/2019	<mdc< td=""><td>200</td><td>3/21/2019</td><td>31300</td><td>20</td></mdc<>	200	3/21/2019	31300	20
11/21/2019	<mdc< td=""><td>200</td><td>6/20/2019</td><td>41300</td><td>20</td></mdc<>	200	6/20/2019	41300	20
Well 512			9/11/2019	26100	20
3/21/2019	3550	200	11/21/2019	30000	20
6/20/2019	3500	200	Well 566		
9/11/2019	3640	200	3/21/2019	453	20
11/21/2019	3470	200	6/20/2019	533	20
			9/11/2019	490	20
			11/21/2019	567	20

Table D.4 Tritium (H-3) Results for On-Site Water Samples (Post-Purge for Groundwater) Results are in picocuries per Liter (pCi/L)

Table D.4 (Continued) Tritium (H-3) Results for On-Site Water Samples (Post-Purge for Groundwater)

Location	H	-3
Date	Result	MDC
Well 567		
3/21/2019	1110	200
6/20/2019	937	200
9/11/2019	926	200
11/21/2019	853	200
Well 570		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Well 574		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Well 575		
3/21/2019	36200	200
6/20/2019	38700	200
9/11/2019	33800	200
11/21/2019	50100	200
Well 577		
3/21/2019	18600	200
6/20/2019	28600	200
9/11/2019	40400	200
11/21/2019	35300	200
Well 600		
3/21/2019	8420	200
6/20/2019	12700	200
9/11/2019	17800	200
11/21/2019	23500	200
Well 602		
3/21/2019	2300	200
6/20/2019	2190	200
9/11/2019	2160	200
11/21/2019	1960	200
11/21/2019	1900	200

Results are in picocuries per Liter (pCi/L)

| IEMA | Division of Nuclear Safety

Sheffield Radiological Environmental Monitoring Report

| Calendar Year 2019

Table D.5 Tritium (H-3) Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	H	-3
Date	Result	MDC
Lawson Creek		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Lorensen Farm	Creek	
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Lunchroom Tap		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Mineral PWS		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Neponset PWS		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Pencock Hill PW	S	
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200
Sheffield PWS		
3/21/2019	<mdc< td=""><td>200</td></mdc<>	200
6/20/2019	<mdc< td=""><td>200</td></mdc<>	200
9/11/2019	<mdc< td=""><td>200</td></mdc<>	200
11/21/2019	<mdc< td=""><td>200</td></mdc<>	200

Location	C-	14
Date	Result	MDC
Well 511		
11/21/2019	46.2	15.2
Well 563		
9/11/2019	754.0	15.2
11/21/2019	882.1	15.2
Well 570		
9/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
11/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 575		
9/11/2019	278.2	15.2
11/21/2019	457.4	15.2
Well 577		
9/11/2019	105.3	15.2
11/21/2019	92.1	15.2
Well TB		
9/11/2019	141.3	15.2
11/21/2019	76.1	15.2

Table D.6 Carbon-14 Results for On-Site Water Samples (Pre-Purge) Results are in picocuries per Liter (pCi/L)

Table D.7 Carbon-14 Results for On-Site Water Samples (Post-Purge for Groundwater) Results are in picocuries per Liter (pCi/L)

Location	C-	14	Location	C-	14	Location	C-	14	Location	C-	14
Date	Result	MDC	Date	Result	MDC	Date	Result	MDC	Date	Result	MDC
South Creek			Well 513			Well 567			Well 604		
3/21/2019	<mdc< td=""><td>15.2</td><td>6/20/2019</td><td><mdc< td=""><td>15.2</td><td>11/21/2019</td><td>33.7</td><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	15.2	6/20/2019	<mdc< td=""><td>15.2</td><td>11/21/2019</td><td>33.7</td><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	15.2	11/21/2019	33.7	15.2	3/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
Trout Lake A			Well 515			Well 570			9/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
11/21/2019	<mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td><td>Well 606</td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	15.2	3/21/2019	<mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td><td>Well 606</td><td></td><td></td></mdc<></td></mdc<>	15.2	3/21/2019	<mdc< td=""><td>15.2</td><td>Well 606</td><td></td><td></td></mdc<>	15.2	Well 606		
Trout Lake C			Well 516			9/11/2019	<mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	15.2	3/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
9/11/2019	<mdc< td=""><td>15.2</td><td>11/21/2019</td><td><mdc< td=""><td>15.2</td><td>11/21/2019</td><td><mdc< td=""><td>15.2</td><td>9/11/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	15.2	11/21/2019	<mdc< td=""><td>15.2</td><td>11/21/2019</td><td><mdc< td=""><td>15.2</td><td>9/11/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	15.2	11/21/2019	<mdc< td=""><td>15.2</td><td>9/11/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	15.2	9/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
Trout Lake D			Well 525			Well 574			Well 607		
6/20/2019	<mdc< td=""><td>15.2</td><td>9/11/2019</td><td>47.0</td><td>15.2</td><td>6/20/2019</td><td><mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	15.2	9/11/2019	47.0	15.2	6/20/2019	<mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	15.2	3/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 150			Well 548			9/11/2019	<mdc< td=""><td>15.2</td><td>11/21/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	15.2	11/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
9/11/2019	<mdc< td=""><td>15.2</td><td>3/21/2019</td><td><mdc< td=""><td>15.2</td><td>Well 575</td><td></td><td></td><td>Well H</td><td></td><td></td></mdc<></td></mdc<>	15.2	3/21/2019	<mdc< td=""><td>15.2</td><td>Well 575</td><td></td><td></td><td>Well H</td><td></td><td></td></mdc<>	15.2	Well 575			Well H		
Well 434			6/20/2019	<mdc< td=""><td>15.2</td><td>9/11/2019</td><td>442.6</td><td>15.2</td><td>6/20/2019</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	15.2	9/11/2019	442.6	15.2	6/20/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
3/21/2019	<mdc< td=""><td>15.2</td><td>Well 559</td><td></td><td></td><td>11/21/2019</td><td>427.5</td><td>15.2</td><td>Well I</td><td></td><td></td></mdc<>	15.2	Well 559			11/21/2019	427.5	15.2	Well I		
Well 511			6/20/2019	1711.9	15.2	Well 577			3/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
3/21/2019	85.5	15.2	Well 563			3/21/2019	113.5	15.2	6/20/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
7/10/2019	52.6	15.2	6/20/2019	497.1	15.2	9/11/2019	96.3	15.2	Well M		
11/21/2019	50.5	15.2	9/11/2019	735.0	15.2	11/21/2019	104.6	15.2	9/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 512			11/21/2019	882.0	15.2	Well 600			Well TB		
11/21/2019	59.2	15.2	Well 566			11/21/2019	85.1	15.2	3/21/2019	148.9	15.2
Well J			3/21/2019	<mdc< td=""><td>15.2</td><td>Well 602</td><td></td><td></td><td>9/11/2019</td><td>162.8</td><td>15.2</td></mdc<>	15.2	Well 602			9/11/2019	162.8	15.2
3/21/2019	<mdc< td=""><td>15.2</td><td>11/21/2019</td><td><mdc< td=""><td>15.2</td><td>6/20/2019</td><td><mdc< td=""><td>15.2</td><td>11/21/2019</td><td>102.3</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	15.2	11/21/2019	<mdc< td=""><td>15.2</td><td>6/20/2019</td><td><mdc< td=""><td>15.2</td><td>11/21/2019</td><td>102.3</td><td>15.2</td></mdc<></td></mdc<>	15.2	6/20/2019	<mdc< td=""><td>15.2</td><td>11/21/2019</td><td>102.3</td><td>15.2</td></mdc<>	15.2	11/21/2019	102.3	15.2
6/20/2019	<mdc< td=""><td>15.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<>	15.2									

Location	C-14			
Date	Result	MDC		
Lawson Creek				
11/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		
Lorensen Farm	Creek			
6/20/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		
Lunchroom Tap				
3/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		
Mineral PWS				
6/20/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		
Neponset PWS				
9/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		
Pencock Hill PW	IS			
9/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		
Sheffield PWS				
3/21/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2		

Table D.8 Carbon-14 Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	ation Strontium		Location	Stron	ntium	Location	Stron	ntium
Date	Result	MDC	Date	Result	MDC	Date	Result	MDC
South Creek			Well 516			Well 575		
3/21/2019	<mdc< td=""><td>1.1</td><td>11/21/2019</td><td><mdc< td=""><td>1.1</td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<></td></mdc<>	1.1	11/21/2019	<mdc< td=""><td>1.1</td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	9/11/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Trout Lake A			Well 525			Well 577		
11/21/2019	<mdc< td=""><td>1.1</td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<></td></mdc<>	1.1	9/11/2019	<mdc< td=""><td>1.1</td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Trout Lake C			Well 559			Well 600		
9/11/2019	<mdc< td=""><td>1.1</td><td>6/20/2019</td><td><mdc< td=""><td>1.1</td><td>11/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<></td></mdc<>	1.1	6/20/2019	<mdc< td=""><td>1.1</td><td>11/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	11/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Trout Lake D			Well 563			Well 602		
6/20/2019	<mdc< td=""><td>1.1</td><td>6/20/2019</td><td><mdc< td=""><td>1.1</td><td>6/20/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<></td></mdc<>	1.1	6/20/2019	<mdc< td=""><td>1.1</td><td>6/20/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	6/20/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Well 150			Well 566			Well 604		
9/11/2019	<mdc< td=""><td>1.1</td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<></td></mdc<>	1.1	3/21/2019	<mdc< td=""><td>1.1</td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Well 511			11/21/2019	<mdc< td=""><td>1.1</td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	9/11/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
11/21/2019	<mdc< td=""><td>1.1</td><td>Well 567</td><td></td><td></td><td>Well 606</td><td></td><td></td></mdc<>	1.1	Well 567			Well 606		
Well 512			11/21/2019	<mdc< td=""><td>1.1</td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
11/21/2019	<mdc< td=""><td>1.1</td><td>Well 570</td><td></td><td></td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	Well 570			9/11/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Well 513			3/21/2019	<mdc< td=""><td>1.1</td><td>Well 607</td><td></td><td></td></mdc<>	1.1	Well 607		
6/20/2019	<mdc< td=""><td>1.1</td><td>Well 574</td><td></td><td></td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	Well 574			3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
Well 515			6/20/2019	<mdc< td=""><td>1.1</td><td>11/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	11/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
3/21/2019	<mdc< td=""><td>1.1</td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td><td>Well H</td><td></td><td></td></mdc<></td></mdc<>	1.1	9/11/2019	<mdc< td=""><td>1.1</td><td>Well H</td><td></td><td></td></mdc<>	1.1	Well H		
Well J			Well M			6/20/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
3/21/2019	<mdc< td=""><td>1.1</td><td>9/11/2019</td><td><mdc< td=""><td>1.1</td><td>Well I</td><td></td><td></td></mdc<></td></mdc<>	1.1	9/11/2019	<mdc< td=""><td>1.1</td><td>Well I</td><td></td><td></td></mdc<>	1.1	Well I		
6/20/2019	<mdc< td=""><td>1.1</td><td>Well TB</td><td></td><td></td><td>3/21/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	Well TB			3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1
			3/21/2019	<mdc< td=""><td>1.1</td><td>6/20/2019</td><td><mdc< td=""><td>1.1</td></mdc<></td></mdc<>	1.1	6/20/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1

Table D.9 Total Strontium Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Stron	ntium	
Date	Result	MDC	
Lawson Creek			
11/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	
Lorensen Farm	Creek		
6/20/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	
Lunchroom Tap			
3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	
Mineral PWS			
6/20/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	
Neponset PWS			
9/11/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	
Pencock Hill PW	IS		
9/11/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	
Sheffield PWS			
3/21/2019	<mdc< td=""><td>1.1</td></mdc<>	1.1	

Table D.10 Total Strontium Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Am-	241	Co-	·60	Cs-	137	Location	Am-	241	Co	·60	Cs-	137
Date	Result	MDC	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC	Result	MDC
South Creek							Well 525						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Trout Lake A							Well 559						
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>6/20/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>6/20/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>6/20/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Trout Lake C							Well 563						
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>6/20/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>6/20/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>6/20/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Trout Lake D							Well 566						
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 150							11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>Well 567</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>Well 567</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>Well 567</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<>	4	Well 567						
Well 511							11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>Well 570</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>Well 570</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>Well 570</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<>	4	Well 570						
Well 512							3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>Well 574</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>Well 574</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>Well 574</td><td></td><td></td><td></td><td></td><td></td><td></td></mdc<>	4	Well 574						
Well 513							6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 515							Well 575						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>9/11/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 516							Well 577						
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well M							Well TB						
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td><td>3/21/2019</td><td><mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	4	3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4

Table D.11 Additional Radionuclide Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Am-	241	Co	·60	Cs-	137
Date	Result	MDC	Result	MDC	Result	MDC
Well 600						
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 602						
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 604						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 606						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well 607						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well H						
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well I						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Well J						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4

Table D.11 (Continued) Additional Radionuclide Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Am-	241	Co-	·60	Cs-	137
Date	Result	MDC	Result	MDC	Result	MDC
Lawson Creek						
11/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Lorensen Farm	Creek					
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Lunchroom Tap						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Mineral PWS						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
6/20/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Neponset PWS						
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Pencock Hill PW	/S					
9/11/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4
Sheffield PWS						
3/21/2019	<mdc< td=""><td>50</td><td><mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<></td></mdc<>	50	<mdc< td=""><td>4</td><td><mdc< td=""><td>4</td></mdc<></td></mdc<>	4	<mdc< td=""><td>4</td></mdc<>	4

Table D.12 Additional Radionuclide Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Table D.13 Sheffield On-Site Sediment Sampling Results Results are in picocuries per gram (pCi/g)

Location	Am-	Am-241		60	Cs-137	
Date	Result	MDC	Result	MDC	Result	MDC
South Creek						
6/20/2019	<mdc< td=""><td>0.17</td><td><mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.17	<mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.01	<mdc< td=""><td>0.02</td></mdc<>	0.02
9/11/2019	<mdc< td=""><td>0.17</td><td><mdc< td=""><td>0.01</td><td>0.02</td><td>0.02</td></mdc<></td></mdc<>	0.17	<mdc< td=""><td>0.01</td><td>0.02</td><td>0.02</td></mdc<>	0.01	0.02	0.02
Trout Lake D						
6/20/2019	<mdc< td=""><td>0.17</td><td><mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.17	<mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.01	<mdc< td=""><td>0.02</td></mdc<>	0.02
9/11/2019	<mdc< td=""><td>0.17</td><td><mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.17	<mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.01	<mdc< td=""><td>0.02</td></mdc<>	0.02

Location	Am-	Am-241		Co-60		Cs-137	
Date	Result	Result MDC I		MDC	Result	MDC	
Lawson Creek							
6/20/2019	<mdc< td=""><td>0.17</td><td><mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.17	<mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.01	<mdc< td=""><td>0.02</td></mdc<>	0.02	
9/11/2019	<mdc< td=""><td>0.17</td><td><mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.17	<mdc< td=""><td>0.01</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.01	<mdc< td=""><td>0.02</td></mdc<>	0.02	

Table D.14 Sheffield Off-Site Sediment Sampling Results Results are in picocuries per gram (pCi/g)

Table D.15 On-Site Vegetation Sampling Results Results are in picocuries per gram (pCi/g)

Location	Am-241		Co-	·60	Cs-137	
Date	Result	MDC	Result	MDC	Result	MDC
Onsite Composi	ite					
6/20/2019	<mdc< td=""><td>0.7</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.7	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
9/11/2019	<mdc< td=""><td>0.7</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.7	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
Trout Lake D						
6/20/2019	<mdc< td=""><td>0.7</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.7	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
9/11/2019	<mdc< td=""><td>0.7</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.7	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1

Location	Alp	ha	Be	ta	Location	Alp	ha	Be	ta
Date	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC
Site Air					Site Air				
1/2/2019	<mdc< td=""><td>3.7</td><td>25.2</td><td>4.9</td><td>7/8/2019</td><td><mdc< td=""><td>3.7</td><td>24.0</td><td>4.9</td></mdc<></td></mdc<>	3.7	25.2	4.9	7/8/2019	<mdc< td=""><td>3.7</td><td>24.0</td><td>4.9</td></mdc<>	3.7	24.0	4.9
1/7/2019	<mdc< td=""><td>3.7</td><td>36.5</td><td>4.9</td><td>7/15/2019</td><td><mdc< td=""><td>3.7</td><td>23.4</td><td>4.9</td></mdc<></td></mdc<>	3.7	36.5	4.9	7/15/2019	<mdc< td=""><td>3.7</td><td>23.4</td><td>4.9</td></mdc<>	3.7	23.4	4.9
1/14/2019	<mdc< td=""><td>3.7</td><td>35.8</td><td>4.9</td><td>7/22/2019</td><td><mdc< td=""><td>3.7</td><td>19.7</td><td>4.9</td></mdc<></td></mdc<>	3.7	35.8	4.9	7/22/2019	<mdc< td=""><td>3.7</td><td>19.7</td><td>4.9</td></mdc<>	3.7	19.7	4.9
1/21/2019	<mdc< td=""><td>3.7</td><td>26.4</td><td>4.9</td><td>7/29/2019</td><td><mdc< td=""><td>3.7</td><td>23.7</td><td>4.9</td></mdc<></td></mdc<>	3.7	26.4	4.9	7/29/2019	<mdc< td=""><td>3.7</td><td>23.7</td><td>4.9</td></mdc<>	3.7	23.7	4.9
1/28/2019	<mdc< td=""><td>3.7</td><td>34.1</td><td>4.9</td><td>8/5/2019</td><td><mdc< td=""><td>3.7</td><td>23.2</td><td>4.9</td></mdc<></td></mdc<>	3.7	34.1	4.9	8/5/2019	<mdc< td=""><td>3.7</td><td>23.2</td><td>4.9</td></mdc<>	3.7	23.2	4.9
2/4/2019	<mdc< td=""><td>3.7</td><td>23.3</td><td>4.9</td><td>8/12/2019</td><td><mdc< td=""><td>3.7</td><td>32.2</td><td>4.9</td></mdc<></td></mdc<>	3.7	23.3	4.9	8/12/2019	<mdc< td=""><td>3.7</td><td>32.2</td><td>4.9</td></mdc<>	3.7	32.2	4.9
2/11/2019	<mdc< td=""><td>3.7</td><td>22.4</td><td>4.9</td><td>8/19/2019</td><td>6.0</td><td>3.7</td><td>29.3</td><td>4.9</td></mdc<>	3.7	22.4	4.9	8/19/2019	6.0	3.7	29.3	4.9
2/18/2019	<mdc< td=""><td>3.7</td><td>20.9</td><td>4.9</td><td>8/26/2019</td><td><mdc< td=""><td>3.7</td><td>24.1</td><td>4.9</td></mdc<></td></mdc<>	3.7	20.9	4.9	8/26/2019	<mdc< td=""><td>3.7</td><td>24.1</td><td>4.9</td></mdc<>	3.7	24.1	4.9
2/25/2019	4.2	3.7	36.6	4.9	9/3/2019	4.0	3.7	24.6	4.9
3/4/2019	<mdc< td=""><td>3.7</td><td>22.2</td><td>4.9</td><td>9/9/2019</td><td><mdc< td=""><td>3.7</td><td>27.9</td><td>4.9</td></mdc<></td></mdc<>	3.7	22.2	4.9	9/9/2019	<mdc< td=""><td>3.7</td><td>27.9</td><td>4.9</td></mdc<>	3.7	27.9	4.9
3/11/2019	<mdc< td=""><td>3.7</td><td>27.7</td><td>4.9</td><td>9/16/2019</td><td>6.0</td><td>3.7</td><td>41.2</td><td>4.9</td></mdc<>	3.7	27.7	4.9	9/16/2019	6.0	3.7	41.2	4.9
3/18/2019	<mdc< td=""><td>3.7</td><td>21.1</td><td>4.9</td><td>9/23/2019</td><td>6.2</td><td>3.7</td><td>46.6</td><td>4.9</td></mdc<>	3.7	21.1	4.9	9/23/2019	6.2	3.7	46.6	4.9
3/25/2019	<mdc< td=""><td>3.7</td><td>23.1</td><td>4.9</td><td>9/30/2019</td><td><mdc< td=""><td>3.7</td><td>20.3</td><td>4.9</td></mdc<></td></mdc<>	3.7	23.1	4.9	9/30/2019	<mdc< td=""><td>3.7</td><td>20.3</td><td>4.9</td></mdc<>	3.7	20.3	4.9
4/1/2019	<mdc< td=""><td>3.7</td><td>15.0</td><td>4.9</td><td>10/7/2019</td><td><mdc< td=""><td>3.7</td><td>15.5</td><td>4.9</td></mdc<></td></mdc<>	3.7	15.0	4.9	10/7/2019	<mdc< td=""><td>3.7</td><td>15.5</td><td>4.9</td></mdc<>	3.7	15.5	4.9
4/8/2019	<mdc< td=""><td>3.7</td><td>22.4</td><td>4.9</td><td>10/14/2019</td><td><mdc< td=""><td>3.7</td><td>25.1</td><td>4.9</td></mdc<></td></mdc<>	3.7	22.4	4.9	10/14/2019	<mdc< td=""><td>3.7</td><td>25.1</td><td>4.9</td></mdc<>	3.7	25.1	4.9
4/15/2019	<mdc< td=""><td>3.7</td><td>10.4</td><td>4.9</td><td>10/21/2019</td><td><mdc< td=""><td>3.7</td><td>29.2</td><td>4.9</td></mdc<></td></mdc<>	3.7	10.4	4.9	10/21/2019	<mdc< td=""><td>3.7</td><td>29.2</td><td>4.9</td></mdc<>	3.7	29.2	4.9
4/22/2019	<mdc< td=""><td>3.7</td><td>17.4</td><td>4.9</td><td>10/28/2019</td><td><mdc< td=""><td>3.7</td><td>18.0</td><td>4.9</td></mdc<></td></mdc<>	3.7	17.4	4.9	10/28/2019	<mdc< td=""><td>3.7</td><td>18.0</td><td>4.9</td></mdc<>	3.7	18.0	4.9
4/29/2019	<mdc< td=""><td>3.7</td><td>17.1</td><td>4.9</td><td>11/5/2019</td><td><mdc< td=""><td>3.7</td><td>23.4</td><td>4.9</td></mdc<></td></mdc<>	3.7	17.1	4.9	11/5/2019	<mdc< td=""><td>3.7</td><td>23.4</td><td>4.9</td></mdc<>	3.7	23.4	4.9
5/6/2019	<mdc< td=""><td>3.7</td><td>10.6</td><td>4.9</td><td>11/11/2019</td><td><mdc< td=""><td>3.7</td><td>26.4</td><td>4.9</td></mdc<></td></mdc<>	3.7	10.6	4.9	11/11/2019	<mdc< td=""><td>3.7</td><td>26.4</td><td>4.9</td></mdc<>	3.7	26.4	4.9
5/13/2019	<mdc< td=""><td>3.7</td><td>12.1</td><td>4.9</td><td>11/18/2019</td><td><mdc< td=""><td>3.7</td><td>35.4</td><td>4.9</td></mdc<></td></mdc<>	3.7	12.1	4.9	11/18/2019	<mdc< td=""><td>3.7</td><td>35.4</td><td>4.9</td></mdc<>	3.7	35.4	4.9
5/20/2019	<mdc< td=""><td>3.7</td><td>22.5</td><td>4.9</td><td>11/25/2019</td><td><mdc< td=""><td>3.7</td><td>22.7</td><td>4.9</td></mdc<></td></mdc<>	3.7	22.5	4.9	11/25/2019	<mdc< td=""><td>3.7</td><td>22.7</td><td>4.9</td></mdc<>	3.7	22.7	4.9
5/28/2019	<mdc< td=""><td>3.7</td><td>12.0</td><td>4.9</td><td>12/2/2019</td><td><mdc< td=""><td>3.7</td><td>15.5</td><td>4.9</td></mdc<></td></mdc<>	3.7	12.0	4.9	12/2/2019	<mdc< td=""><td>3.7</td><td>15.5</td><td>4.9</td></mdc<>	3.7	15.5	4.9
6/3/2019	<mdc< td=""><td>3.7</td><td>16.5</td><td>4.9</td><td>12/9/2019</td><td><mdc< td=""><td>3.7</td><td>23.2</td><td>4.9</td></mdc<></td></mdc<>	3.7	16.5	4.9	12/9/2019	<mdc< td=""><td>3.7</td><td>23.2</td><td>4.9</td></mdc<>	3.7	23.2	4.9
6/10/2019	<mdc< td=""><td>3.7</td><td>21.3</td><td>4.9</td><td>12/16/2019</td><td>5.3</td><td>3.7</td><td>43.9</td><td>4.9</td></mdc<>	3.7	21.3	4.9	12/16/2019	5.3	3.7	43.9	4.9
6/17/2019	<mdc< td=""><td>3.7</td><td>21.2</td><td>4.9</td><td>12/23/2019</td><td><mdc< td=""><td>3.7</td><td>32.3</td><td>4.9</td></mdc<></td></mdc<>	3.7	21.2	4.9	12/23/2019	<mdc< td=""><td>3.7</td><td>32.3</td><td>4.9</td></mdc<>	3.7	32.3	4.9
6/24/2019	<mdc< td=""><td>3.7</td><td>16.7</td><td>4.9</td><td>12/30/2019</td><td>3.8</td><td>3.7</td><td>42.9</td><td>4.9</td></mdc<>	3.7	16.7	4.9	12/30/2019	3.8	3.7	42.9	4.9

Table D.16 Air Monitoring Gross Alpha/Beta Results for Sheffield Site Results are in femtocuries per cubic meter (fCi/m³)

Location	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual Exposure
	mR/quarter	mR/quarter	mR/quarter	mR/quarter	mR/year
SHER01	12.1	11.0	14.8	12.8	50.7
SHER02	9.9	8.9	13.0	11.1	42.9
SHER03	10.3	9.9	12.1	12.0	44.3
SHER04	11.0	11.2	15.8	12.4	50.3
SHER05	12.1	10.4	14.1	16.7	53.4
SHER06	11.3	9.3	13.9	13.2	47.7
SHER07	10.5	10.2	10.8	14.0	45.5
SHER08	11.1	10.5	11.3	12.0	44.9
SHER09	8.2	7.7	11.4	10.7	38.0
SHER10	10.0	11.9	14.4	12.4	48.7
SHER11	8.9	12.6	12.8	13.3	47.6
SHER12	10.6	9.4	14.1	14.3	48.4
SHER13	10.8	10.0	12.4	11.6	44.8

Table D.17 Summary of Ambient Gamma Results

Annual Exposure column based on averages of all available data. Quarter length is estimated to be 91.25 days.

<u>Appendix E</u> Background Location Sample Results

Location	Alp	ha	Be	ta
Date	Result	MDC	Result	MDC
E Boat Ramp				
2/20/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
6/11/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
9/9/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
11/18/2019	<mdc< td=""><td>2.1</td><td>4.1</td><td>3.7</td></mdc<>	2.1	4.1	3.7
Strawkaws Boa	t Ramp			
2/20/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
6/11/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
9/9/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
11/18/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
W Boat Ramp				
2/20/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
6/11/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
9/9/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7
11/18/2019	<mdc< td=""><td>2.1</td><td><mdc< td=""><td>3.7</td></mdc<></td></mdc<>	2.1	<mdc< td=""><td>3.7</td></mdc<>	3.7

Table E.1 Gross Alpha/Beta Results for All Water Samples Results are in picocuries per Liter (pCi/L)

Location	H	-3
Date	Result	MDC
E Boat Ramp		
2/20/2019	<mdc< td=""><td>200</td></mdc<>	200
6/11/2019	<mdc< td=""><td>200</td></mdc<>	200
9/9/2019	<mdc< td=""><td>200</td></mdc<>	200
11/18/2019	<mdc< td=""><td>200</td></mdc<>	200
Strawkaws Boa	t Ramp	
2/20/2019	<mdc< td=""><td>200</td></mdc<>	200
6/11/2019	<mdc< td=""><td>200</td></mdc<>	200
9/9/2019	<mdc< td=""><td>200</td></mdc<>	200
11/18/2019	<mdc< td=""><td>200</td></mdc<>	200
W Boat Ramp		
2/20/2019	<mdc< td=""><td>200</td></mdc<>	200
6/11/2019	<mdc< td=""><td>200</td></mdc<>	200
9/9/2019	<mdc< td=""><td>200</td></mdc<>	200
11/18/2019	<mdc< td=""><td>200</td></mdc<>	200

Table E.2 Tritium (H-3) Results for Water Samples from Background Location Results are in picocuries per liter (pCi/L)

Table E.3 Carbon-14 Results for Water Samples from Background Location Results are in picocuries per liter (pCi/L)

Location	C-14				
Date	Result	MDC			
E Boat Ramp					
2/20/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2			
6/11/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2			
Strawkaws Boa	t Ramp				
2/20/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2			
11/18/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2			
W Boat Ramp					
9/9/2019	<mdc< td=""><td>15.2</td></mdc<>	15.2			

Table E.4 Total Strontium Results for Water Samples from Background Location
Results are in picocuries per liter (pCi/L)

Location	Strontium			
Date	Result	MDC		
E Boat Ramp				
6/11/2019	<mdc< td=""><td>0.6</td></mdc<>	0.6		
Strawkaws Boa	t Ramp			
2/20/2019	<mdc< td=""><td>0.6</td></mdc<>	0.6		
11/18/2019	<mdc< td=""><td>0.6</td></mdc<>	0.6		
W Boat Ramp				
9/9/2019	<mdc< td=""><td>0.6</td></mdc<>	0.6		

Table E.5 Additional Radionuclides Results for Water Samples from Background Location Results are in picocuries per liter (pCi/L)

Location	Am-241		Co-	·60	Cs-137	
Date	Result	MDC	Result	MDC	Result	MDC
E Boat Ramp						
2/20/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
6/11/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
9/9/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
11/18/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
Strawkaws Boa	t Ramp					
2/20/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
6/11/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
9/9/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
11/18/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
W Boat Ramp						
2/20/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
6/11/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
9/9/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8
11/18/2019	<mdc< td=""><td>49</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<></td></mdc<>	49	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.8</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.8</td></mdc<>	3.8

Location	Am-	Am-241		60	Cs-137		
Date	Result	MDC	Result	MDC	Result	MDC	
Strawkaws Boa	t Ramp						
9/9/2019	<mdc< td=""><td>0.05</td><td><mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.05	<mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.02	<mdc< td=""><td>0.02</td></mdc<>	0.02	
W Boat Ramp							
6/11/2019	<mdc< td=""><td>0.05</td><td><mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<></td></mdc<>	0.05	<mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<>	0.02	0.02	0.02	
9/9/2019	<mdc< td=""><td>0.05</td><td><mdc< td=""><td>0.02</td><td>0.04</td><td>0.02</td></mdc<></td></mdc<>	0.05	<mdc< td=""><td>0.02</td><td>0.04</td><td>0.02</td></mdc<>	0.02	0.04	0.02	

Table E.6 Gamma Results for Sediment Samples from Background Location Results are in picocuries per liter (pCi/g)

Table E.7 Gamma Results for Vegetation Samples from Background Location Results are in picocuries per liter (pCi/g)

Location	Am-241		Co	60	Cs-137		
Date	Result	MDC	Result	MDC	Result	MDC	
E Boat Ramp							
6/11/2019	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
9/9/2019	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
Strawkaws Boa	at Ramp						
6/11/2019	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
9/9/2019	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
W Boat Ramp							
6/11/2019	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
9/9/2019	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	

Location	Alı	oha	Beta		Location	Alp	oha	Beta	
Date	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC
Knotts Street Air Sampler				Knotts Street	Air Samp	oler			
1/2/2019	<mdc< td=""><td>3.0</td><td>32.1</td><td>4.1</td><td>7/1/2019</td><td><mdc< td=""><td>3.0</td><td>30.4</td><td>4.1</td></mdc<></td></mdc<>	3.0	32.1	4.1	7/1/2019	<mdc< td=""><td>3.0</td><td>30.4</td><td>4.1</td></mdc<>	3.0	30.4	4.1
1/8/2019	4.3	3.0	47.5	4.1	7/8/2019	<mdc< td=""><td>3.0</td><td>28.7</td><td>4.1</td></mdc<>	3.0	28.7	4.1
1/15/2019	<mdc< td=""><td>3.0</td><td>23.0</td><td>4.1</td><td>7/15/2019</td><td><mdc< td=""><td>3.0</td><td>27.9</td><td>4.1</td></mdc<></td></mdc<>	3.0	23.0	4.1	7/15/2019	<mdc< td=""><td>3.0</td><td>27.9</td><td>4.1</td></mdc<>	3.0	27.9	4.1
1/22/2019	<mdc< td=""><td>3.0</td><td>31.6</td><td>4.1</td><td>7/23/2019</td><td><mdc< td=""><td>3.0</td><td>16.7</td><td>4.1</td></mdc<></td></mdc<>	3.0	31.6	4.1	7/23/2019	<mdc< td=""><td>3.0</td><td>16.7</td><td>4.1</td></mdc<>	3.0	16.7	4.1
1/29/2019	<mdc< td=""><td>3.0</td><td>34.4</td><td>4.1</td><td>7/29/2019</td><td>3.5</td><td>3.0</td><td>24.1</td><td>4.1</td></mdc<>	3.0	34.4	4.1	7/29/2019	3.5	3.0	24.1	4.1
2/4/2019	<mdc< td=""><td>3.0</td><td>31.4</td><td>4.1</td><td>8/5/2019</td><td>3.5</td><td>3.0</td><td>33.2</td><td>4.1</td></mdc<>	3.0	31.4	4.1	8/5/2019	3.5	3.0	33.2	4.1
2/11/2019	<mdc< td=""><td>3.0</td><td>14.8</td><td>4.1</td><td>8/13/2019</td><td><mdc< td=""><td>3.0</td><td>28.6</td><td>4.1</td></mdc<></td></mdc<>	3.0	14.8	4.1	8/13/2019	<mdc< td=""><td>3.0</td><td>28.6</td><td>4.1</td></mdc<>	3.0	28.6	4.1
2/20/2019	3.9	3.0	27.3	4.1	8/19/2019	3.1	3.0	35.8	4.1
2/26/2019	4.5	3.0	40.4	4.1	8/27/2019	3.1	3.0	25.0	4.1
3/4/2019	<mdc< td=""><td>3.0</td><td>29.0</td><td>4.1</td><td>9/3/2019</td><td>3.5</td><td>3.0</td><td>30.7</td><td>4.1</td></mdc<>	3.0	29.0	4.1	9/3/2019	3.5	3.0	30.7	4.1
3/11/2019	<mdc< td=""><td>3.0</td><td>23.0</td><td>4.1</td><td>9/10/2019</td><td>5.4</td><td>3.0</td><td>34.5</td><td>4.1</td></mdc<>	3.0	23.0	4.1	9/10/2019	5.4	3.0	34.5	4.1
3/18/2019	3.4	3.0	21.2	4.1	9/16/2019	6.6	3.0	42.5	4.1
3/26/2019	<mdc< td=""><td>3.0</td><td>16.3</td><td>4.1</td><td>9/23/2019</td><td>7.2</td><td>3.0</td><td>49.9</td><td>4.1</td></mdc<>	3.0	16.3	4.1	9/23/2019	7.2	3.0	49.9	4.1
4/2/2019	<mdc< td=""><td>3.0</td><td>18.4</td><td>4.1</td><td>10/1/2019</td><td>3.6</td><td>3.0</td><td>28.1</td><td>4.1</td></mdc<>	3.0	18.4	4.1	10/1/2019	3.6	3.0	28.1	4.1
4/8/2019	<mdc< td=""><td>3.0</td><td>24.6</td><td>4.1</td><td>10/7/2019</td><td><mdc< td=""><td>3.0</td><td>20.7</td><td>4.1</td></mdc<></td></mdc<>	3.0	24.6	4.1	10/7/2019	<mdc< td=""><td>3.0</td><td>20.7</td><td>4.1</td></mdc<>	3.0	20.7	4.1
4/16/2019	<mdc< td=""><td>3.0</td><td>14.5</td><td>4.1</td><td>10/15/2019</td><td><mdc< td=""><td>3.0</td><td>27.3</td><td>4.1</td></mdc<></td></mdc<>	3.0	14.5	4.1	10/15/2019	<mdc< td=""><td>3.0</td><td>27.3</td><td>4.1</td></mdc<>	3.0	27.3	4.1
4/24/2019	<mdc< td=""><td>3.0</td><td>14.7</td><td>4.1</td><td>10/22/2019</td><td><mdc< td=""><td>3.0</td><td>27.4</td><td>4.1</td></mdc<></td></mdc<>	3.0	14.7	4.1	10/22/2019	<mdc< td=""><td>3.0</td><td>27.4</td><td>4.1</td></mdc<>	3.0	27.4	4.1
4/30/2019	<mdc< td=""><td>3.0</td><td>22.1</td><td>4.1</td><td>10/29/2019</td><td><mdc< td=""><td>3.0</td><td>25.8</td><td>4.1</td></mdc<></td></mdc<>	3.0	22.1	4.1	10/29/2019	<mdc< td=""><td>3.0</td><td>25.8</td><td>4.1</td></mdc<>	3.0	25.8	4.1
5/7/2019	<mdc< td=""><td>3.0</td><td>16.9</td><td>4.1</td><td>11/5/2019</td><td><mdc< td=""><td>3.0</td><td>20.6</td><td>4.1</td></mdc<></td></mdc<>	3.0	16.9	4.1	11/5/2019	<mdc< td=""><td>3.0</td><td>20.6</td><td>4.1</td></mdc<>	3.0	20.6	4.1
5/14/2019	<mdc< td=""><td>3.0</td><td>17.4</td><td>4.1</td><td>11/12/2019</td><td><mdc< td=""><td>3.0</td><td>31.4</td><td>4.1</td></mdc<></td></mdc<>	3.0	17.4	4.1	11/12/2019	<mdc< td=""><td>3.0</td><td>31.4</td><td>4.1</td></mdc<>	3.0	31.4	4.1
5/20/2019	<mdc< td=""><td>3.0</td><td>26.8</td><td>4.1</td><td>11/19/2019</td><td><mdc< td=""><td>3.0</td><td>39.2</td><td>4.1</td></mdc<></td></mdc<>	3.0	26.8	4.1	11/19/2019	<mdc< td=""><td>3.0</td><td>39.2</td><td>4.1</td></mdc<>	3.0	39.2	4.1
5/28/2019	<mdc< td=""><td>3.0</td><td>16.7</td><td>4.1</td><td>11/26/2019</td><td><mdc< td=""><td>3.0</td><td>33.0</td><td>4.1</td></mdc<></td></mdc<>	3.0	16.7	4.1	11/26/2019	<mdc< td=""><td>3.0</td><td>33.0</td><td>4.1</td></mdc<>	3.0	33.0	4.1
6/3/2019	<mdc< td=""><td>3.0</td><td>20.8</td><td>4.1</td><td>12/3/2019</td><td><mdc< td=""><td>3.0</td><td>11.5</td><td>4.1</td></mdc<></td></mdc<>	3.0	20.8	4.1	12/3/2019	<mdc< td=""><td>3.0</td><td>11.5</td><td>4.1</td></mdc<>	3.0	11.5	4.1
6/10/2019	<mdc< td=""><td>3.0</td><td>25.7</td><td>4.1</td><td>12/10/2019</td><td><mdc< td=""><td>3.0</td><td>29.3</td><td>4.1</td></mdc<></td></mdc<>	3.0	25.7	4.1	12/10/2019	<mdc< td=""><td>3.0</td><td>29.3</td><td>4.1</td></mdc<>	3.0	29.3	4.1
6/17/2019	4.2	3.0	15.3	4.1	12/16/2019	4.4	3.0	30.8	4.1
6/25/2019	<mdc< td=""><td>3.0</td><td>20.8</td><td>4.1</td><td>12/23/2019</td><td>3.1</td><td>3.0</td><td>43.3</td><td>4.1</td></mdc<>	3.0	20.8	4.1	12/23/2019	3.1	3.0	43.3	4.1

Table E.8 Air Monitoring Gross Alpha/Beta Results for Background Location (Springfield) Results are in femtocuries per cubic meter (fCi/m³)

Location	Alp	ha	Be	ta	Location	Alp	ha	Be	ta
Date	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC
Marion Office					Marion Office				
1/2/2019	<mdc< td=""><td>3.2</td><td>30.9</td><td>4.5</td><td>7/15/2019</td><td><mdc< td=""><td>3.2</td><td>21.9</td><td>4.5</td></mdc<></td></mdc<>	3.2	30.9	4.5	7/15/2019	<mdc< td=""><td>3.2</td><td>21.9</td><td>4.5</td></mdc<>	3.2	21.9	4.5
1/9/2019	4.5	3.2	43.1	4.5	7/22/2019	<mdc< td=""><td>3.2</td><td>14.1</td><td>4.5</td></mdc<>	3.2	14.1	4.5
1/15/2019	<mdc< td=""><td>3.2</td><td>27.9</td><td>4.5</td><td>7/31/2019</td><td><mdc< td=""><td>3.2</td><td>27.5</td><td>4.5</td></mdc<></td></mdc<>	3.2	27.9	4.5	7/31/2019	<mdc< td=""><td>3.2</td><td>27.5</td><td>4.5</td></mdc<>	3.2	27.5	4.5
1/28/2019	<mdc< td=""><td>3.2</td><td>20.1</td><td>4.5</td><td>8/7/2019</td><td>3.4</td><td>3.2</td><td>39.7</td><td>4.5</td></mdc<>	3.2	20.1	4.5	8/7/2019	3.4	3.2	39.7	4.5
2/5/2019	<mdc< td=""><td>3.2</td><td>26.4</td><td>4.5</td><td>8/12/2019</td><td>3.2</td><td>3.2</td><td>33.2</td><td>4.5</td></mdc<>	3.2	26.4	4.5	8/12/2019	3.2	3.2	33.2	4.5
2/11/2019	<mdc< td=""><td>3.2</td><td>16.1</td><td>4.5</td><td>8/21/2019</td><td>3.9</td><td>3.2</td><td>29.4</td><td>4.5</td></mdc<>	3.2	16.1	4.5	8/21/2019	3.9	3.2	29.4	4.5
2/20/2019	<mdc< td=""><td>3.2</td><td>28.2</td><td>4.5</td><td>8/27/2019</td><td><mdc< td=""><td>3.2</td><td>17.4</td><td>4.5</td></mdc<></td></mdc<>	3.2	28.2	4.5	8/27/2019	<mdc< td=""><td>3.2</td><td>17.4</td><td>4.5</td></mdc<>	3.2	17.4	4.5
2/27/2019	5.2	3.2	38.2	4.5	9/11/2019	5.9	3.2	36.1	4.5
3/6/2019	<mdc< td=""><td>3.2</td><td>26.9</td><td>4.5</td><td>9/25/2019</td><td>4.6</td><td>3.2</td><td>35.3</td><td>4.5</td></mdc<>	3.2	26.9	4.5	9/25/2019	4.6	3.2	35.3	4.5
3/12/2019	3.4	3.2	25.2	4.5	10/9/2019	<mdc< td=""><td>3.2</td><td>28.6</td><td>4.5</td></mdc<>	3.2	28.6	4.5
3/27/2019	<mdc< td=""><td>3.2</td><td>12.0</td><td>4.5</td><td>10/21/2019</td><td>3.3</td><td>3.2</td><td>32.9</td><td>4.5</td></mdc<>	3.2	12.0	4.5	10/21/2019	3.3	3.2	32.9	4.5
4/3/2019	3.6	3.2	17.8	4.5	10/29/2019	<mdc< td=""><td>3.2</td><td>21.1</td><td>4.5</td></mdc<>	3.2	21.1	4.5
4/22/2019	<mdc< td=""><td>3.2</td><td>17.7</td><td>4.5</td><td>11/4/2019</td><td><mdc< td=""><td>3.2</td><td>21.0</td><td>4.5</td></mdc<></td></mdc<>	3.2	17.7	4.5	11/4/2019	<mdc< td=""><td>3.2</td><td>21.0</td><td>4.5</td></mdc<>	3.2	21.0	4.5
4/30/2019	<mdc< td=""><td>3.2</td><td>19.1</td><td>4.5</td><td>11/13/2019</td><td><mdc< td=""><td>3.2</td><td>30.7</td><td>4.5</td></mdc<></td></mdc<>	3.2	19.1	4.5	11/13/2019	<mdc< td=""><td>3.2</td><td>30.7</td><td>4.5</td></mdc<>	3.2	30.7	4.5
5/8/2019	<mdc< td=""><td>3.2</td><td>18.0</td><td>4.5</td><td>11/20/2019</td><td><mdc< td=""><td>3.2</td><td>40.4</td><td>4.5</td></mdc<></td></mdc<>	3.2	18.0	4.5	11/20/2019	<mdc< td=""><td>3.2</td><td>40.4</td><td>4.5</td></mdc<>	3.2	40.4	4.5
5/14/2019	<mdc< td=""><td>3.2</td><td>15.0</td><td>4.5</td><td>12/4/2019</td><td><mdc< td=""><td>3.2</td><td>21.0</td><td>4.5</td></mdc<></td></mdc<>	3.2	15.0	4.5	12/4/2019	<mdc< td=""><td>3.2</td><td>21.0</td><td>4.5</td></mdc<>	3.2	21.0	4.5
5/22/2019	<mdc< td=""><td>3.2</td><td>15.1</td><td>4.5</td><td>12/10/2019</td><td>6.3</td><td>3.2</td><td>37.3</td><td>4.5</td></mdc<>	3.2	15.1	4.5	12/10/2019	6.3	3.2	37.3	4.5
5/29/2019	<mdc< td=""><td>3.2</td><td>19.0</td><td>4.5</td><td>12/18/2019</td><td>5.2</td><td>3.2</td><td>31.0</td><td>4.5</td></mdc<>	3.2	19.0	4.5	12/18/2019	5.2	3.2	31.0	4.5
6/25/2019	<mdc< td=""><td>3.2</td><td>19.0</td><td>4.5</td><td>12/23/2019</td><td>4.7</td><td>3.2</td><td>37.6</td><td>4.5</td></mdc<>	3.2	19.0	4.5	12/23/2019	4.7	3.2	37.6	4.5
7/3/2019	3.8	3.2	30.3	4.5	12/31/2019	<mdc< td=""><td>3.2</td><td>33.4</td><td>4.5</td></mdc<>	3.2	33.4	4.5
7/9/2019	4.6	3.2	26.3	4.5					

Table E.9 Air Monitoring Gross Alpha/Beta Results for Background Location (Marion) Results are in femtocuries per cubic meter (fCi/m³)

Location	Alp	ha	Be	ta	Location	Alp	ha	Beta	
Date	Result	MDC	Result	MDC	Date	Result	MDC	Result	MDC
DNS Lab					IDNS Lab				
1/3/2019	<mdc< td=""><td>3.9</td><td>26.7</td><td>5.5</td><td>7/15/2019</td><td><mdc< td=""><td>3.9</td><td>21.5</td><td>5.5</td></mdc<></td></mdc<>	3.9	26.7	5.5	7/15/2019	<mdc< td=""><td>3.9</td><td>21.5</td><td>5.5</td></mdc<>	3.9	21.5	5.5
1/9/2019	<mdc< td=""><td>3.9</td><td>49.8</td><td>5.5</td><td>7/24/2019</td><td><mdc< td=""><td>3.9</td><td>16.1</td><td>5.5</td></mdc<></td></mdc<>	3.9	49.8	5.5	7/24/2019	<mdc< td=""><td>3.9</td><td>16.1</td><td>5.5</td></mdc<>	3.9	16.1	5.5
1/15/2019	<mdc< td=""><td>3.9</td><td>23.0</td><td>5.5</td><td>7/30/2019</td><td><mdc< td=""><td>3.9</td><td>26.6</td><td>5.5</td></mdc<></td></mdc<>	3.9	23.0	5.5	7/30/2019	<mdc< td=""><td>3.9</td><td>26.6</td><td>5.5</td></mdc<>	3.9	26.6	5.5
1/22/2019	<mdc< td=""><td>3.9</td><td>27.5</td><td>5.5</td><td>8/6/2019</td><td><mdc< td=""><td>3.9</td><td>23.3</td><td>5.5</td></mdc<></td></mdc<>	3.9	27.5	5.5	8/6/2019	<mdc< td=""><td>3.9</td><td>23.3</td><td>5.5</td></mdc<>	3.9	23.3	5.5
2/4/2019	<mdc< td=""><td>3.9</td><td>31.4</td><td>5.5</td><td>8/14/2019</td><td><mdc< td=""><td>3.9</td><td>35.6</td><td>5.5</td></mdc<></td></mdc<>	3.9	31.4	5.5	8/14/2019	<mdc< td=""><td>3.9</td><td>35.6</td><td>5.5</td></mdc<>	3.9	35.6	5.5
2/20/2019	<mdc< td=""><td>3.9</td><td>23.8</td><td>5.5</td><td>8/20/2019</td><td><mdc< td=""><td>3.9</td><td>19.5</td><td>5.5</td></mdc<></td></mdc<>	3.9	23.8	5.5	8/20/2019	<mdc< td=""><td>3.9</td><td>19.5</td><td>5.5</td></mdc<>	3.9	19.5	5.5
2/27/2019	4.6	3.9	39.7	5.5	8/29/2019	<mdc< td=""><td>3.9</td><td>21.2</td><td>5.5</td></mdc<>	3.9	21.2	5.5
3/6/2019	4.3	3.9	22.9	5.5	9/5/2019	<mdc< td=""><td>3.9</td><td>24.6</td><td>5.5</td></mdc<>	3.9	24.6	5.5
3/11/2019	<mdc< td=""><td>3.9</td><td>28.7</td><td>5.5</td><td>9/12/2019</td><td>6.1</td><td>3.9</td><td>35.5</td><td>5.5</td></mdc<>	3.9	28.7	5.5	9/12/2019	6.1	3.9	35.5	5.5
3/21/2019	4.4	3.9	25.1	5.5	9/20/2019	5.2	3.9	39.0	5.5
3/28/2019	<mdc< td=""><td>3.9</td><td>10.9</td><td>5.5</td><td>9/27/2019</td><td>4.1</td><td>3.9</td><td>31.3</td><td>5.5</td></mdc<>	3.9	10.9	5.5	9/27/2019	4.1	3.9	31.3	5.5
4/2/2019	<mdc< td=""><td>3.9</td><td>19.0</td><td>5.5</td><td>10/2/2019</td><td><mdc< td=""><td>3.9</td><td>23.9</td><td>5.5</td></mdc<></td></mdc<>	3.9	19.0	5.5	10/2/2019	<mdc< td=""><td>3.9</td><td>23.9</td><td>5.5</td></mdc<>	3.9	23.9	5.5
4/11/2019	<mdc< td=""><td>3.9</td><td>11.2</td><td>5.5</td><td>10/11/2019</td><td><mdc< td=""><td>3.9</td><td>24.4</td><td>5.5</td></mdc<></td></mdc<>	3.9	11.2	5.5	10/11/2019	<mdc< td=""><td>3.9</td><td>24.4</td><td>5.5</td></mdc<>	3.9	24.4	5.5
4/17/2019	<mdc< td=""><td>3.9</td><td>13.2</td><td>5.5</td><td>10/17/2019</td><td><mdc< td=""><td>3.9</td><td>20.1</td><td>5.5</td></mdc<></td></mdc<>	3.9	13.2	5.5	10/17/2019	<mdc< td=""><td>3.9</td><td>20.1</td><td>5.5</td></mdc<>	3.9	20.1	5.5
4/25/2019	<mdc< td=""><td>3.9</td><td>17.4</td><td>5.5</td><td>10/21/2019</td><td><mdc< td=""><td>3.9</td><td>39.7</td><td>5.5</td></mdc<></td></mdc<>	3.9	17.4	5.5	10/21/2019	<mdc< td=""><td>3.9</td><td>39.7</td><td>5.5</td></mdc<>	3.9	39.7	5.5
5/1/2019	<mdc< td=""><td>3.9</td><td>14.5</td><td>5.5</td><td>10/29/2019</td><td><mdc< td=""><td>3.9</td><td>15.3</td><td>5.5</td></mdc<></td></mdc<>	3.9	14.5	5.5	10/29/2019	<mdc< td=""><td>3.9</td><td>15.3</td><td>5.5</td></mdc<>	3.9	15.3	5.5
5/7/2019	<mdc< td=""><td>3.9</td><td>14.0</td><td>5.5</td><td>11/8/2019</td><td><mdc< td=""><td>3.9</td><td>24.0</td><td>5.5</td></mdc<></td></mdc<>	3.9	14.0	5.5	11/8/2019	<mdc< td=""><td>3.9</td><td>24.0</td><td>5.5</td></mdc<>	3.9	24.0	5.5
5/15/2019	<mdc< td=""><td>3.9</td><td>14.9</td><td>5.5</td><td>11/14/2019</td><td><mdc< td=""><td>3.9</td><td>29.1</td><td>5.5</td></mdc<></td></mdc<>	3.9	14.9	5.5	11/14/2019	<mdc< td=""><td>3.9</td><td>29.1</td><td>5.5</td></mdc<>	3.9	29.1	5.5
5/22/2019	<mdc< td=""><td>3.9</td><td>15.6</td><td>5.5</td><td>11/20/2019</td><td><mdc< td=""><td>3.9</td><td>43.1</td><td>5.5</td></mdc<></td></mdc<>	3.9	15.6	5.5	11/20/2019	<mdc< td=""><td>3.9</td><td>43.1</td><td>5.5</td></mdc<>	3.9	43.1	5.5
6/4/2019	<mdc< td=""><td>3.9</td><td>17.7</td><td>5.5</td><td>12/3/2019</td><td><mdc< td=""><td>3.9</td><td>18.8</td><td>5.5</td></mdc<></td></mdc<>	3.9	17.7	5.5	12/3/2019	<mdc< td=""><td>3.9</td><td>18.8</td><td>5.5</td></mdc<>	3.9	18.8	5.5
6/18/2019	<mdc< td=""><td>3.9</td><td>20.0</td><td>5.5</td><td>12/13/2019</td><td>4.7</td><td>3.9</td><td>30.3</td><td>5.5</td></mdc<>	3.9	20.0	5.5	12/13/2019	4.7	3.9	30.3	5.5
7/3/2019	9.7	3.9	20.5	5.5	12/17/2019	4.3	3.9	25.5	5.5
7/9/2019	<mdc< td=""><td>3.9</td><td>23.0</td><td>5.5</td><td>12/27/2019</td><td>4.2</td><td>3.9</td><td>34.0</td><td>5.5</td></mdc<>	3.9	23.0	5.5	12/27/2019	4.2	3.9	34.0	5.5

Table E.10 Air Monitoring Gross Alpha/Beta Results for Background Location (West Chicago) Results are in femtocuries per cubic meter (fCi/m3)

Location	Quarter 1	Quarter 2 mR/quarter	Quarter 3	Quarter 4	Annual Exposure mR/year
					-
KC-01	11.0	11.0	10.3	10.6	42.9
KC-02	10.8	14.7	7.7	8.1	41.3
KC-03		9.3	12.7	7.8	39.7
KC-04		9.0	8.4	9.1	35.4
KC-05		13.1	8.6	9.4	41.6
KC-06	9.0	10.0	9.0	9.4	37.4
KC-07	8.5	11.5	8.8	7.6	36.4
KC-08	9.3	9.9	8.3	8.0	35.5
KC-09	11.3	11.9	9.0	6.0	38.2
KC-10	10.3	10.4	10.7	7.9	39.3
KC-11	12.0	12.5	10.6	10.7	45.8
KC-12	13.1	11.7	10.1	10.2	45.1
KC-13	10.8	12.2	8.9	10.4	42.3
KC-14		10.8	7.7	10.4	38.4
KC-15	9.9	12.9	7.5	7.4	37.7

Table E.11 Summary of Ambient Gamma Results for Background Location

Blanks in the table indicate that dosimeters were missing at the end of the quarter. Annual Exposure column based on averages of all available data. Quarter length is estimated to be 91.25 days.

Illinois Emergency Management Agency 1035 Outer Park Drive Springfield, IL 62704

www.iema.illinois.gov

Printed by the Authority of the State of Illinois 12-17 Web IOCI 18-0323