

2018 Radiological Environmental Monitoring Report for Sheffield Low-Level Radioactive Waste Site

(This Page Intentionally Left Blank)

Table of Contents

Section Title	<u>Page Number</u>
Executive Summary	
Introduction	6
History of the Site	6
Description of the Sheffield LLRW Disposal Site	6
Hydrology of the Sheffield LLRW Disposal Site	8
Northeast Pathway	
Southeast Pathway	
Settlement Agreement	
Tritium Migration	
IEMA Radiological Environmental Monitoring Program	11
Sampling and Monitoring Activities	
Laboratory Analysis	14
Radiological Environmental Sampling and Monitoring Results	16
Summary	
Appendix A: Maps of IEMA Monitoring Locations for the Sheffield LLRW	Site22
Appendix B: On-Site Tritium (H-3) Water Sample Result Graphs	
Appendix C: Off-Site Tritium (H-3) Water Sample Result Graphs	
Appendix D: Sheffield Sample Results	
Appendix E: Background Sample Results	

Executive Summary

The Illinois Emergency Management Agency (IEMA) is mandated with protecting the citizens and environment of Illinois from the potentially harmful effects of radioactive materials. To that end, the IEMA's Division of Nuclear Safety monitors the environs of several locations within Illinois for the presence of radionuclides. IEMA's radiological environmental monitoring program has three primary functions: 1) collection of diverse samples from carefully chosen locations on a routine basis; 2) analyzing samples for radionuclides; and 3) evaluation of test results on both an annual and historical basis. One of the locations monitored by IEMA is the Sheffield Low-Level Radioactive Waste (LLRW) disposal site near Sheffield, Illinois. The purpose of this report is to provide updated results of monitoring conducted at the Sheffield LLRW site during calendar year 2018; however, monitoring results from other time periods have been included for purposes of clarity or continuity.

The Sheffield LLRW site is located near the town of Sheffield, in Bureau County, Illinois. The site consists of a 20.4 acre disposal site and a 196 acre buffer zone. The LLRW site received radioactive waste between 1968 and 1978 when the disposal site reached capacity. Approximately 3.2 million cubic feet of waste was buried in 21 shallow earthen trenches.

The state of Illinois has conducted radiological environmental monitoring at the site since 1967. Since radioactive waste was disposed of in earthen trenches, monitoring of the ground water on and around the site has been the primary focus of the monitoring program. Radioactive contamination was found in ground water in the southeast quadrant of the disposal site in 1976. As a result, extensive geological and hydrological studies have been completed to gain a better understanding of the movement of contaminants away from the disposal trenches and to determine the best approach to monitor that movement.

It was discovered that two ground water pathways flow away from the site. The primary pathway exists under the northern two-thirds of the disposal site, and the secondary under the southern one-third. Both pathways flow in a generally northeastern direction, and eventually discharge into Trout Lake. IEMA's radiological monitoring efforts focus on the contamination levels along these two main pathways; however, careful monitoring is done in other areas both on site and off to ensure that the contamination is contained within the disposal site and buffer zone.

The performance of the Sheffield LLRW site is measured by its ability to isolate the radioactive waste from the surrounding environment; thus minimizing the potential for public exposure. The radiological environmental monitoring program at the Sheffield LLRW site is designed to evaluate the site's performance by monitoring radionuclide movement, or lack thereof, away from the site.

Regulatory or "trigger" limits for specific radionuclides are defined in a settlement agreement between the State of Illinois and the original owner and operator of the site US Ecology, known as the Sheffield Agreed Order (Agreed Order). Results from samples collected on-site are compared to these limits and to historical data in order to determine compliance with the agreement and to evaluate the site's performance. Off-site samples are compared to the more stringent United States Environmental Protection Agency (USEPA) and Illinois Environmental Protection Agency (IEPA) drinking water standards. Drinking water standards are regulated by the USEPA and IEPA. IEMA's purpose for sampling private wells and public water supplies is solely to screen for the presence of radionuclides.

As part of IEMA's Sheffield LLRW radiological environmental monitoring program, samples are collected and analyzed for a variety of radionuclides. Sampling is conducted at both on-site and off-site locations and includes ground water, surface water, and water from public water supplies, vegetation, sediment, and air samples. Additionally, monitoring for ambient gamma radiation is conducted around the site and buffer zone. Sample and monitoring results are compared to the appropriate regulatory limits, evaluated against historical data to

monitor for changes at specific sampling locations, and used to evaluate the overall performance of the LLRW site.

In 2018, with the exception of tritium concentrations found in on-site ground water samples at Well H and Well TB, all results from IEMA's radiological environmental monitoring program at the Sheffield LLRW site were consistent with historical data and expected contamination levels. Tritium results from samples taken at Well H and Well TB, although well below the Trigger limits set in the Agreed Order, show a gradual increase in concentration. The gradual increase seen at Well H is a continuation of an upward trend that has been seen at that well over the last several years. The tritium concentrations seen at Well TB have fluctuated greatly over the last decade, but appear to have a general trend upward.

Due to the continued increase in concentration at Well H, in 2018 IEMA re-evaluated its sampling plan and added seven new wells to its routine sampling activities. Wells I, J, M, 566, 604, 606, and 607 were added to ensure that the extent of the plume to the south and southeast is captured. Of these seven new wells, only one saw results above the established MDC. The tritium concentration at Well 566 was slightly above the MDC in the third and fourth quarters of 2018. Well 566 is located on the southern edge of the southeastern pathway. Results from these wells indicated that the contamination plume has remained within the major groundwater pathways described in the Hydrology of the Sheffield LLRW Disposal Site section of this report, despite the increase in tritium concentrations seen at Wells H and TB.

IEMA's Division of Nuclear Safety will continue to monitor the environs of, and evaluate its radiological environmental monitoring program for, the Sheffield LLRW site to ensure that the site is performing as expected and that the citizens and environment of Illinois are protected from the potentially harmful effects of radioactive materials buried at the site.

Introduction

The Illinois Emergency Management Agency (IEMA) is charged with protecting the citizens of Illinois from the potentially harmful effects of radioactive materials. To that end, IEMA's Division of Nuclear Safety monitors the environment in Illinois for the presence of radionuclides. One of the locations monitored by IEMA is the area around the Sheffield Low-Level Radioactive Waste (LLRW) disposal site. Appendix A includes maps of the area around the Sheffield LLRW site, indicating the locations of IEMA sampling points.

History of the Site

The Sheffield LLRW disposal site is located approximately three miles southwest of the town of Sheffield in Bureau County, Illinois. The town of Sheffield is about 120 miles west-southwest of Chicago, situated approximately midway between Peoria and Moline/Rock Island, just south of Interstate 80. The facility began disposing LLRW in 1967 and closed in 1978 upon reaching capacity. The LLRW disposal site includes 3.2 million cubic feet of LLRW buried in 21 shallow earthen trenches on 20.4 acres.

The state of Illinois began conducting an environmental monitoring program at the LLRW site in 1967. Between 1967 and 1980, the program was conducted by the Illinois Department of Public Health (IDPH). Since October 1980, the Illinois Emergency Management Agency (IEMA; formerly the Illinois Department of Nuclear Safety (IDNS)) has managed the monitoring program. Results of monitoring conducted between 1967 and 1988 were reported by IDNS in February 1991 (IDNS 1991), and the results of monitoring during 1989 and 1990 were reported in June 1992 (IDNS 1992). The June 1992 report also described features of the site, including meteorological and hydrological factors, which control the concentrations of radioactive contaminants in ground water and surface water.

In 1976 radioactive contamination was observed in ground water in the southeast quadrant of the original 20.4-acre disposal site. As a result, ongoing studies of the geology and hydrology of the site were expanded by both the Illinois State Geological Survey (Heigold and Larson 1984) and the United States Geological Survey (USGS) (Foster et al. 1984). These studies were designed to determine the best approach for monitoring the movement of the radioactive contamination in the ground water.

Since disposal of LLRW took place in earthen trenches, the major monitoring effort has been directed toward detecting radioactive contamination of ground water. Samples are analyzed for a variety of radionuclides. These radionuclides may emit alpha particles, beta particles, and/or gamma rays. The type of radioactive emission determines the type of analysis required to detect a radionuclide.

The performance of a LLRW site is measured by its ability to isolate the radioactive waste from the surrounding environment. The environmental monitoring program at the Sheffield LLRW disposal site is designed to evaluate the site's performance as defined above by monitoring radionuclide movement, or lack thereof, away from the site and into pathways of possible human exposure.

Description of the Sheffield LLRW Disposal Site

The Sheffield LLRW disposal site is located on rolling glaciated terrain in northcentral Illinois in Bureau County. The location of the site is shown in Figure 1. More detailed site maps and sampling locations are located in Appendix A.

Figure 1. Location of Sheffield Low-Level Radioactive Waste Disposal Site (Disposal Site indicated by red square on the map. Buffer Zone is outlined in red.)

The area near the LLRW site is sparsely populated with less than 20 residences within a two mile radius. Sheffield, with a population of 926 (2010 Census), is three miles to the northeast. The unincorporated town of Mineral, population 237 (2010 Census), is five miles to the northwest; the town of Neponset, population 473 (2010 Census), is three miles south of the site.

Neponset

The 20.4-acre disposal site contains 21 disposal trenches, varying from 8 to 25 feet deep. A 196-acre buffer zone surrounds the site which includes a small lake called Trout Lake (previously known as Strip Mine Lake and Barbed Wire Lake) and a small stream to the south and southeast. The facility was licensed to accept radioactive waste in August 1967, began disposing waste in 1968, and closed in 1978 after the shallow land burial trenches were filled with LLRW.

A precise inventory of LLRW buried in each trench was not kept by the site operator, but has been estimated in three separate studies (NUS 1979; Dragonette et al. 1979; MacKenzie et al. 1985). The estimated inventory of radionuclides is listed in Table 1.

Table I. Maximum Values Estimated in the Sheffield Inventory (Important Radionuclides with Half-Lives Greater than Five years)

Radionuclide	Curies	Half-Life (Years)
Tritium (H-3)	5,990	12.35
Carbon-14 (C-14)	450	5,730
Iodine-129 (I-129)	0.01	15,700,000
Strontium-90 (Sr-90)	3,690	28.1
Cesium-137 (Cs-137)	15,500	30
Cobalt-60 (Co-60)	20,000	5.27
Plutonium-238 (Pu-238)	7.5	87.74
Plutonium-239 (Pu-239); Plutonium-240 (Pu-240);		
Plutonium-241 (Pu-241)	4,870	24,065; 6,550; 14.4
Am-241	137.5	432

Two hazardous waste disposal areas are located to the north and northwest of the LLRW disposal site and are separated from it by at least 150 feet. These areas were used for the disposal of non-radioactive hazardous chemical waste. The first area accepted waste from 1968 to 1974 and the second area from 1974 to 1983.

The U.S. Environmental Protection Agency (USEPA) and the Illinois Environmental Protection Agency (IEPA) are the primary agencies responsible for regulation of the adjacent hazardous chemical waste sites. The site operator is working with USEPA and IEPA to remediate these sites and the surrounding area.

As part of this remediation effort, a single set of samples were collected during 1988 by SAIC, a US Ecology contractor, and analyzed for radionuclides as well as chemical contaminants. The results of this set of samples indicated extensive contamination of ground water to the northeast of the LLRW site (SAIC 1988). Ground water in this area contains tritium (hydrogen-3 or H-3, is a radioactive form of hydrogen that decays via beta emission) as well as a variety of chemical contaminants. Since tritium is chemically identical to non-radioactive hydrogen, it is readily assimilated into water (that is, one or both of the "Hs" in H₂O can be tritium, a form called "tritiated water"). This causes tritium to be very mobile in the natural environment. Tritium's half-life is 12.3 years, which means it will persist in the environment for about 100 years.

Hydrology of the Sheffield LLRW Disposal Site

The Sheffield LLRW site and its surrounding buffer zone are located on rolling glacial terrain. The shallow local aquifer is comprised of saturated glacial sediments and is isolated from the deep regional aquifer by a 450-foot sequence of Pennsylvanian shale bedrock. The piezometric surface of the glacial aquifer generally conforms to topographic drainage systems with gradients nominally trending west to east.

Northeast Pathway

The primary flow path for radiologically contaminated ground water begins in a pebbly sand deposit that exists under the northern two-thirds of the disposal site. This relatively permeable unit (Toulon Member of the Glasford Formation) extends to the northeast where it constricts, filling a narrow outwash channel in the

bedrock surface. This narrow channel, filled with deposits of saturated sand and gravel, extends from the northeast portion of the LLRW site to Trout Lake.

Because the northeast pathway is the principal route for contaminants leaving the LLRW site, considerable effort has gone toward understanding radionuclide movement in this area. Monitoring wells in this pathway include 563, 575, 577, and 600. The ground water in these wells emanates from the continuous deposit of relatively permeable sand and gravel that underlies the northern two-thirds of LLRW site. This deposit of coarse grained soils narrows and extends in a northeasterly direction terminating along the western shore of Trout Lake. The above-cited wells are used to sample contaminated ground water as it moves through this narrow outwash channel from beneath the LLRW site.

Of the more than 100 ground water monitoring wells throughout the entire buffer zone, the most highly contaminated are in the northeast pathway. These wells run along a line originating near the eastern edge of the LLRW site and extend about 900 feet in a northeasterly direction.

Southeast Pathway

A second ground water pathway extends from under the approximate southern one-third of the LLRW site into the valley to the south and southeast. Unlike the northeast pathway, there is no continuous, spatially concentrated deposit of relatively permeable, coarse grained soils in the southeast pathway. Because of this, ground water flow velocities and volumes are relatively reduced, lessening the potential for movement of significant quantities of radiological contamination away from the disposal site. Consequently, areas of contamination are less extensive and contaminant concentrations are significantly less than those observed in the more permeable northeast pathway. Like the northeast pathway, the vast majority of radiological contamination moving along this pathway ultimately discharges into Trout Lake.

Monitoring wells in this pathway include 512, 525, 567, 602, and TB. The most highly contaminated wells in this pathway are 512 and 602. These wells are located in the buffer zone between the southeast corner of the LLRW site and the small stream (South Creek) located about 300 feet farther to the southeast. Due to equipment malfunctions, IEMA was not able to obtain samples from Well 512 between 2013 and 2016. New sampling equipment was installed on Well 512 in 2017, and sampling resumed at that location.

Settlement Agreement

In 1979, site operator US Ecology attempted to abandon the LLRW site, unilaterally terminating its US Nuclear Regulatory Commission and IDPH licenses and state lease. This led to investigations which revealed that there were faulty trench caps. Both state and federal regulators objected to the unilateral terminations, arguing that the site operator must first safely close the site before terminating either of the licenses. This resulted in both federal and state litigation. The federal litigation was administratively argued before the Atomic Safety and Licensing Board, which eventually ruled against the operator on all counts.

The state's complaint was argued before the Bureau County Circuit Court. After ten years of negotiations, in May 1988, the state of Illinois and US Ecology came to an agreement and the litigation was resolved in the form of a settlement agreement known as the Sheffield Agreed Order (Agreed Order).

The Agreed Order specified what the site operator must do to safely close the site and assure its continuing safety into the future. Provisions and consequences of the agreement have had a significant impact on the scope of the monitoring program. The closure plan for the site has four basic parts:

The operator agreed to install a new, low-permeability clay cap over all the waste trenches. The purpose of the cap is to significantly reduce the amount of radioactive material moving away from the site, reducing the potential for movement of radioactivity beyond the buffer zone.

The operator agreed to purchase a buffer zone around the site. The 196-acre buffer zone is designed to contain, delay, and dilute any contaminants leaching from the waste. This helps to ensure that any discharges beyond the buffer zone are below the limits for release into unrestricted areas. Fences surrounding this zone were to be installed and maintained by the operator (See Figure A-1 in Appendix A).

The operator agreed to monitor and maintain the site and buffer zone until 1998, as well as establish a long-term care fund to pay for IEMA (formerly IDNS) maintenance and monitoring beyond 1998.

If radionuclides are discovered outside the buffer zone in concentrations equal to or exceeding the limits for release to unrestricted areas (see Table 2), the operator must remedy the situation at its expense or pay the state an additional \$1.9 million.

Trigger Limits in Water for Selected Radionuclides Per the Settlement Agreement of 1988					
Radionuclide	Half-Life	Limit in Water (picocuries per Liter)			
H-3	12.35	3,000,000			
C-14	5,730	800,000			
I-129	15,700,000	60			
Sr-90	29.12	300			
Cs-137	30	20,000			
Co-60	5.27	50,000			
Pu-238	87.74	5,000			
Pu-239	24,065	5,000			
Am-241	432	4,000			

Table 2. Trigger Limits in Water for Selected Radionuclides

In 1989, a new cap consisting of 4.5 feet of highly compacted clay and 6 inches of vegetated topsoil was installed. The cap is designed to significantly reduce the amount of precipitation that can infiltrate the trenches and mobilize the waste. As part of the effort to install the cap, a number of onsite monitoring wells, sump risers, and piezometers adjacent to the waste trenches were sealed and are no longer accessible. The new cap and its immediately surrounding area are inspected regularly by IEMA and US Ecology personnel for proper vegetative cover and evidence of erosion or burrowing animals. As part of the settlement agreement, the operator has committed to immediate repairs to damaged areas.

In 2008, IEMA had the cap surveyed to estimate if subsidence is occurring over the trench area and to assess if precipitation will drain from the site or pond on the surface. The survey concluded subsidence, if any, was minimal and the cap is draining as expected.

A second cap survey was completed in 2017. The results of the 2017 survey concluded that there is some subsidence over Trench 18 that could affect drainage. The remainder of the cap shows little to no subsidence,

and appears to be draining as expected. Repair of the subsidence at Trench 18 is scheduled to take place in the spring of 2019. Repairs will consist of filling the affected area with top soil and re-seeding with grass seed for top cover.

The Agreed Order defined terms that are only applicable to the Sheffield LLRW site, such as a "signaling event". A "signaling event" is defined as the occurrence within the Buffer Zone of any one of several events described in detail in the Agreed Order. In 1990, IDNS declared a "signaling event", because sampling and analyses detected that tritium had exited Trout Lake and the Buffer Zone Boundary. While the declaration of a signaling event does not indicate a threat to public health and safety, it serves as an official notice to the operator that events have occurred that may require attention and remedial action.

In accordance with the Agreed Order, the company was required to meet specified financial conditions or post letters of credit. The company did not meet the financial tests and did not post the required letters of credit in either 1996 or 1997. Due to the company's breach of the Agreed Order, in November 1997 the state brought suit in Bureau County to require the company to remain at the site and continue to provide site maintenance after May 1998. In April 1998, the Court ruled that the company was in breach of the agreement and could not turn the site over to the state in May 1998. The court encouraged the parties to settle remaining issues. The parties entered into an addendum to the 1988 agreement called the 1999 First Supplement, which requires the company to remain at the site until it has satisfied the financial conditions of the agreement, modifies some site monitoring requirements, and provides for transfer of private insurance for the site. Pursuant to the First Supplement, U.S. Ecology satisfied all its financial conditions in June 2001, and at that time the state took ownership of the LLRW site. US Ecology remains responsible for certain remedial actions at the facility should any become necessary. The company's liability for such an occurrence is limited to \$1.9 million and expires in 2038. The state may take possession of the buffer zone at any time for a nominal fee, but must take ownership when the Agreed Order expires.

Tritium Migration

With historical failure of the individual trench caps, subsidence, and water in the trenches, it could be expected that leachate migration might ensue. IDPH began monitoring the Sheffield site in 1967, and when the opportunity arose in the form of a study proposed by the Illinois State Geological Survey (ISGS) to evaluate possible migration from the non-radioactive chemical waste site to the west, IDPH requested that the study ascertain whether chemical pollution from the "old" chemical site had entered state land and whether horizontal migration of radioactive waste occurred in the disposal trenches. In 1981, verifiable tritium was found offsite and off US Ecology property in well 563, leading to the idea of the buffer zone. Tritium was migrating across the site in concentrations that were measureable but well below levels considered to be a threat to public health. As a result of the discovery of migrating tritium, geology and hydrology studies were performed by both the Illinois State Geological Survey (Heigold and Larson, 1985) and the United States Geological Survey (Foster et al., 1984).

IEMA Radiological Environmental Monitoring Program

The IEMA Radiological Environmental Monitoring Program for the Sheffield LLRW site is designed to evaluate the environment in general and site performance specifically by monitoring the movement, or lack of movement, of radionuclides, and subsequently determine any potential for public exposure. Program activities consist of sample collection and laboratory analysis, as well as review and analysis of the resulting data. Sample collection includes obtaining samples from both on-site locations (including the site and the buffer zone), and off-site locations (such as creeks or streams beyond the buffer zone and Public Water Supplies in the area). On-site and off-site monitoring locations are shown in Appendix A.

Sample results are compared to applicable trigger or regulatory limits established in the Settlement Agreement, drinking water and groundwater standards, as well as to historical data collected from the site. Drinking and groundwater standards are regulated by the USEPA and IEPA; IEMA's purpose for sampling private wells and public water supplies is solely to screen for the presence of radionuclides in drinking water. A summary of the sample collection, analysis, and results follows. Sample result tables are located in Appendix D and E.

Sampling and Monitoring Activities

On-Site Groundwater Sampling

Since the waste at the Sheffield facility is buried in shallow earthen trenches, the major emphasis of the environmental monitoring program involves the sampling and analysis of ground water. IEMA monitors ground water through wells drilled around the disposal cap and in the buffer zone. On-site groundwater wells are purged and allowed to replenish prior to sampling. Samples are collected and analyzed quarterly from the following locations:

Well 150	Well 511	Well 512	Well 513	Well 515	Well 516	Well 525
Well 563	Well 566	Well 567	Well 569	Well 570	Well 572	Well 573
Well 574	Well 575	Well 577	Well 600	Well 602	Well 604	Well 606
Well 607	Well H	Well I	Well I	Well M	Well TB	

Off-Site Groundwater Sampling

Off-site groundwater samples are collected and analyzed to ensure that radionuclides originating from the Sheffield LLRW disposal site have not migrated into off-site water sources. Samples are collected quarterly from the following location:

Lorenson Farm Well

On-Site Surface Water Sampling

The vast majority of ground water in both major pathways from the disposal site eventually discharges into Trout Lake. Concentrations found at the different surface water sampling locations depend on the concentration of water from the springs, the amount of runoff from surrounding areas, the volume, if any, of lake discharge to the Lawson Creek tributary, and the presence or amount of ice on the lake. Samples are collected and analyzed quarterly from the following locations:

Trout Lake A Trout Lake C Trout Lake D South Creek

Off-Site Surface Water Sampling

Off-site groundwater samples are collected and analyzed to ensure that radionuclides originating from the Sheffield LLRW disposal site have not migrated into off-site water sources. Samples are collected quarterly from the following location:

Lawson Creek* Lorenson Farm Creek

*Effluent from Trout Lake flows along an unnamed tributary of Lawson Creek to the creek itself. Lawson Creek monitoring results are important because they represent the only contaminated surface water flow path crossing the buffer zone boundary.

Public Water Supply Sampling

Drinking water samples are taken to assure that there is no impact to local water supplies. Samples are collected quarterly from the following location:

On-Site Lunchroom Tap Sheffield PWS Mineral PWS Neponset PWS Pencock Hill PWS

Sediment Sampling

Sediment samples are collected from three sampling locations during the second and third quarters of the year to determine whether contaminants previously in solution or suspension have settled out of a body of water and, therefore, cannot be identified through water sampling.

Vegetation Sampling

Vegetation samples are collected from two sampling locations during the second and third quarters of the year and analyzed for radionuclides that may have been transported from the environment and incorporated into or on plant tissue.

Air Sampling

Air particulate samples are collected by a continuously running low-volume air sampler located near the cap. Particulate filter samples are exchanged and analyzed weekly.

Direct Radiation Monitoring

Unlike the environmental samples described above, dosimeters do not provide information on what radionuclides are found in the environment. Instead, dosimeters provide a direct measurement of the total dose produced by all sources of gamma radiation, including naturally occurring radionuclides and cosmic rays. A network of thirteen optically-stimulated luminescent dosimeters (OSLs) is arrayed around the Sheffield LLRW site, and are exchanged and analyzed quarterly.

Background Reference Sampling Locations

IEMA has established the environs of Sangchris Lake State Park, a cooling lake for a coal-fired power station near Kincaid, IL, as the background sampling location for water, sediment, and vegetation samples. Air monitoring stations in Springfield and Marion, IL are used for background monitoring locations for air samples. To establish "background" radiation levels, samples are collected and analyzed utilizing the same procedures and methodologies used for the Sheffield LLRW site samples.

Results for background samples can be found in Appendix E.

General Sampling and Monitoring Information

Every effort is made to collect all scheduled environmental samples; however, occasionally samples are unobtainable due to weather conditions, water levels, or obstructed access.

Laboratory Analysis

Sediment, vegetation, water, and air samples are analyzed by the IEMA Radiochemistry Laboratory located in Springfield, IL. The laboratory uses standard published radioanalytical procedures and participates in semiannual proficiency testing programs through Environmental Resource Associates, an accredited proficiency testing provider, and the Department of Energy (DOE) Radiological and Environmental Science Laboratory's Mixed Analyte Performance Evaluation Program (MAPEP). A general description of each analysis performed is provided below.

Gross Alpha/Beta Analysis

Since the radionuclides in the disposal trenches emit either alpha or beta particles, water and air samples are analyzed for total alpha and beta radioactivity. This analysis provides a good method of screening samples for the presence of radioactive material.

- All air samples are analyzed for gross alpha/beta concentration. Samples are analyzed by gas proportional counting.
- Gross alpha/beta analysis is performed on water samples at least once per year from each routine sampling location. Samples are analyzed by liquid scintillation counting.

Tritium and Carbon-14 Analysis

Tritium (H-3) and carbon-14 (*C*-14) emit low energy beta particles. Their beta energies are too low to be detected by ordinary analytical methodologies for evaluating gross beta activity. To measure the concentration of tritium and carbon-14, water samples are analyzed using liquid scintillation counting, a technique that is capable of measuring radioactive emissions at very low energies and very low concentrations.

- All water samples collected are analyzed for tritium concentration
- C-14 analysis is performed on water samples at least once per year from each routine sampling location.

Total Strontium Analysis

Strontium is easily masked by other radionuclides, including those which are naturally occurring. Therefore, samples being analyzed for Total Strontium undergo preliminary chemical separation so that the strontium may be isolated for analysis. Total Strontium analysis is performed by isolating the strontium from the matrix using a chemical separation method and then counting using a gas proportional counter.

Total Strontium analysis is performed on water samples at least once per year from each routine sampling location.

Gamma Analysis

Gamma emitting radionuclides (Americium-241 (Am-241), Cobalt-60 (Co-60), and Cesium-137 (Cs-137)) are analyzed using a high-purity germanium detector in a process called gamma spectroscopy, which allows the identification of individual radionuclides.

- Gamma spectroscopy analysis is performed on water samples at least once per year from each routine sampling location.
- Gamma spectrometry analysis is performed on all vegetation and sediment samples.

Optically Stimulated Luminescence Analysis

OSLs are analyzed by IEMA staff using a Landauer In Light System Auto Reader. Results found in Appendix D-Table D.10 are expressed as the average milliroentgen (mR) per quarter, and are also calculated to the approximate mR per year that would have been accrued by an individual at that location for an entire year.

The ambient gamma results can be compared to the average annual radiation exposure to an individual of 620 mR/year from various sources (according to the 2009 National Council on Radiation Protection's (NCRP) Report 160). Approximately 8% (49.6 mR/year) of that exposure is from Terrestrial and Cosmic radiation (background radiation), Figure 2.

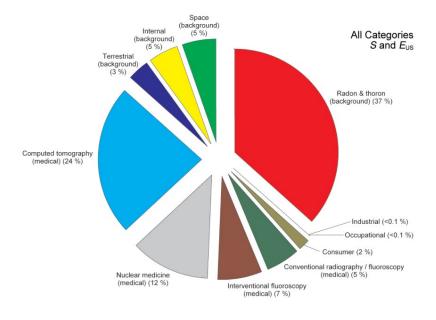


Figure 2. Sources of Radiation Exposure to Man

Reprinted with permission of the National Council on Radiation Protection and Measurements. (http://NCRPpublications.org)

Minimum Detectable Concentration (MDC)

All analytical methods have limitations: amounts that are just too small to be detected. Each measurement technique has its own minimum detectable concentration (MDC) which is the smallest quantity of radioactive material per unit volume that can be detected reliably. An MDC is a function of the limitations of the nuclear counting equipment, the volume/weight of sample used, chemical separation techniques, and ambient natural background radiation present in the laboratory. The MDC is an "a priori" measure of these limitations – an estimate of the lower limit of detection. It is defined as the smallest quantity that an analytical method has 95% likelihood of detecting. For example, the MDC for IEMA's method for tritium in water is 200 pCi/L. Given a sample with a tritium concentration of 200 pCi/L, tritium would be detected approximately 95 times out of 100. Samples with concentrations less than 200 pCi/L could be detected, but with less certainty. Conversely, samples with concentrations higher than 200 pCi/L would be more likely to be detected, approaching 100% as concentrations increase.

Radiological Environmental Sampling and Monitoring Results

On-Site Groundwater Sampling Results

Gross Alpha/Beta Results

Gross alpha/beta results for on-site ground water samples are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.1.

Results indicate that several sampling locations had gross alpha and/or gross beta results above the established MDC; however, occasional sample results with concentrations above the MDC are consistent with historical data and data collected from the background reference area.

Tritium Results

Tritium results for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.3.

Results indicate that all wells sampled within the Northeast and Southeast pathways had tritium concentrations above the established MDCs. Concentrations above MDC are expected from these sampling locations due to the flow of water through the pathways away from the disposal site, and are consistent with historical data. The general trend in tritium concentrations found on-site is decreasing. However, results from samples taken in 2018 at Well H and Well TB were above the MDC and show a trend of increasing tritium concentration. The gradual increase seen at Well H is a continuation of an upward trend that has been seen at that well over the last several years. The tritium concentrations seen at Well TB have fluctuated greatly over the last decade, but appear to have a general trend upward. IEMA will continue to monitor both locations and those to the south and southeast of these wells.

In 2018, due to the continued increase at Well H, IEMA re-evaluated its sampling plan and added seven new wells to its routine sampling activities. Wells I, J, M, 566, 604, 606, and 607 were added to ensure that the extent of the plume to the south and southeast is captured. Of the seven new routinely monitored wells added to monitor the southern and southeastern extent of the contamination plume, only one well saw results in 2018 above the established MDC. The tritium concentration at Well 566 was slightly above the MDC in the third and fourth quarters of 2018.

Tritium results for all other on-site groundwater sampling locations were consistent with historical data and with data collected from the background reference area. All 2018 results were below the 3,000,000 pCi/L Trigger Limit set in the Agreed Order.

Appendix B provides a graphical depiction of tritium (H-3) results from on-site ground water sampling locations. The graphs include historical results for those sites, which are included to display the overall trends of tritium concentration over time. Additionally, the graphs show the MDC, as well as the highest recorded tritium concentration as a percentage of the samples respective regulatory limit (3,000,000 pCi/L).

Gamma Spectrometry Results

Gamma spectrometry results (Am-241, Co-60, and Cs-137) for on-site ground water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order Analytical results are shown in Table D.5.

Results indicate no concentrations above the established MDCs.

Carbon-14 Results

Carbon-14 results for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.5.

Results indicate the presence of C-14 in concentrations above the established MDC in several on-site wells within the known contamination plumes along the Northeast or Southeast groundwater pathways or on or near the disposal site cap. Concentrations of C-14 above the set MDC in these areas are known to exist and are consistent with historical data. Well 51l, which is located outside of the major contamination pathways but near the cap, had a C-14 result above the set MDC. Similar results have been observed at this location over the past several years. Since this well is not in the major pathways, additional sampling will be performed in 2019 at this location and sampling locations near this well to determine the extent of the C-14 spread and to monitor the trend in concentration.

Carbon-14 results for all other on-site groundwater sampling locations were consistent with historical data and with data collected from the background reference area. All 2018 results were below the 800,000 pCi/L Trigger Limit set in the Agreed Order.

Total Strontium Results

Total Strontium results for on-site groundwater samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.5.

Results indicate that Well 512 and 574 had a Total Strontium concentration slightly above the established MDC. The concentrations were well below the 300 pCi/L Trigger Limit set in the Agreed Order. All other locations had results below the established MDC.

On-Site Surface Water Sampling Results

Gross Alpha/Beta Results

Gross alpha/beta results for on-site surface water samples are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D 1

Results indicate that all three Trout Lake sampling locations had gross beta concentrations above the set MDCs; however, occasional sample results with gross alpha and/or gross beta concentrations above the MDC are consistent with historical data and data collected from the background reference area.

Tritium Results

Tritium results for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.3.

Results indicate tritium concentrations slightly above the set MDC at all Trout Lake sampling locations. Concentrations above the MDC are expected at these sampling locations due to the flow of water through the groundwater pathways into Trout Lake, and are consistent with historical data. South Creek sampling results were below the MDC. All results were below the 3,000,000 pCi/L Trigger Limit set in the Agreed Order.

Appendix B provides a graphical depiction of tritium (H-3) results from on-site surface water sampling locations. The graphs include historical results for those sites, which are included to display the overall trends of tritium concentration over time. Additionally, the graphs show the MDC, as well as the highest recorded tritium concentration as a percentage of the samples respective regulatory limit (3,000,000 pCi/L).

Gamma Results

Gamma spectroscopy results (Am-241, Co-60, and Cs-137) for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.5.

Results indicate no concentrations above the established MDCs.

Carbon-14 Results

Carbon-14 results for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.5.

Results indicate no concentrations above the established MDCs.

Total Strontium Results

Total Strontium results for on-site surface water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.5.

Results indicate no concentrations above the established MDCs.

Off-Site Water Sampling Results

Gross Alpha/Beta Results

Gross alpha/beta results for off-site water samples are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.2.

Results above the MDC for gross alpha and/or gross beta were seen from Mineral PWS, Neponset PWS, the Lunchroom Tap, and Pencock Hill PWS. Mineral and Neponset public water systems are supplied through ground water aquifers, the Lunchroom Tap and Pencock Hill through a private ground water well. There is no treatment technologies for the removal of radium used at any of these locations. Therefore, it is likely that the increase in gross alpha/beta concentration is a result of natural radium in the water supply. Gross alpha and gross beta results slightly above the set MDC were also seen at Lorenson Creek. The gross beta results above the established MDC, although not consistently, have been seen at this location in the past and are comparable to the concentrations seen at the background reference location. Gross alpha concentrations above the MDC have not been seen at this sampling location in the past, and are not consistent with the concentrations seen at the background reference location. The concentration seen is low; nevertheless, IEMA will continue to monitor this location for increases in the concentration found.

Tritium Results

Tritium results for on-site surface water samples are compared to historical data, data collected from the background reference location, the Trigger Limits established in the Agreed Order, as well as to drinking water and groundwater standards established by the U.S. Environmental Protection Agency (USEPA) and Illinois Environmental Protection Agency's (IEPA). The US EPA drinking water standard (National Primary Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels, 2000) and the IEPA groundwater standard (Groundwater Quality Standards for Class I: Potable Resource Groundwater, 2013) both set the limit for tritium in groundwater at 20,000 pCi/L. Analytical results are shown in Table D.4.

Appendix C provides a graphical depiction of tritium (H-3) results from off-site water sampling locations. The graphs include historical results for those sites, which are included to display the overall trends of tritium concentration over time. Additionally, the graphs show the MDC, as well as the highest recorded tritium concentration as a percentage of the samples respective regulatory limit (20,000 pCi/L).

Results show no concentrations above the established MDC.

Gamma Results

Gamma spectroscopy results (Am-241, Co-60, and Cs-137) for off-site water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order Analytical results are shown in Table D.6.

Results indicate no concentrations above the established MDCs.

Carbon-14 Results

Carbon-14 results for off-site water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.6.

Results indicate no concentrations above the established MDCs.

Total Strontium Results

Total Strontium results for off-site water samples are compared to historical data, data collected from the background reference location, as well as to the Trigger Limits established in the Agreed Order. Analytical results are shown in Table D.6.

Results indicate no concentrations above the established MDCs.

Sediment Sampling Results

Sediment sample results are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.7.

Results from sediment sampling indicate the presence of Cesium-137 at levels equal to the established MDC. Similar concentrations of Cs-137 have historically been seen in environmental sediment samples as a result of atmospheric nuclear weapons testing. The results are comparable to the concentrations found at the background reference location.

Vegetation Sampling Results

Vegetation sample results are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.8.

Results indicate no concentrations above the established MDCs.

Air Sampling Results

Air sampling results are compared to historical data collected from the site and to sample data collected from the background reference locations. Analytical results are shown in Table D.9.

Results are consistent with historical data and data collected from the background reference area.

Direct Radiation Results

OSL results are compared to historical data collected from the site and to sample data collected from the background reference location. Analytical results are shown in Table D.10.

Results are consistent with historical data and data collected from the background reference area.

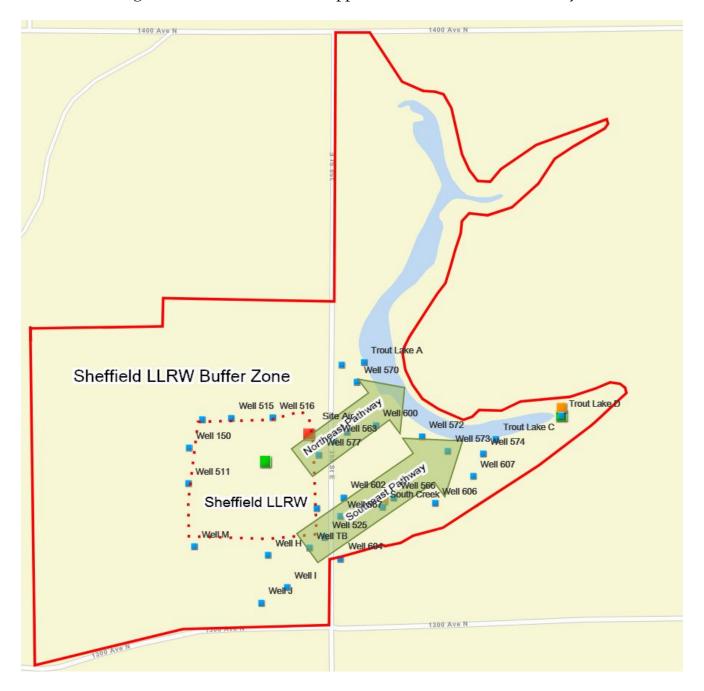
Summary

Due to the original design of the disposal site, the flow of groundwater away from the site, and the radionuclides disposed of; the presence of radiological contamination at the disposal site and within the buffer zone is known to exist and is expected. In 2018, contaminants from the LLRW disposal operations were observed in ground water at the disposal site, as well as within groundwater and surface water collected from the buffer zone. Detectable concentrations of tritium were observed at many on-site sampling locations, with wells located along the ground water pathways containing the highest concentrations. Carbon-14 and Total Strontium concentrations above the MDC were detected within some on-site monitoring wells. Gross alpha and gross beta concentrations above the established MDC were seen intermittently in water samples, but were consistent with historical data. All 2018 water sample results were well below the trigger limits set forth in the

Settlement Agreement of 1988 and listed in Table 2 of this report. Results from vegetation sampling indicate no radionuclides attributable to activities at the LLRW disposal site. Sediment samples show only concentrations of radionuclides attributable to fallout from atmospheric nuclear weapons testing several decades ago.

No contaminants attributable to the LLRW site were found within samples collected from off-site locations. Gross alpha and gross beta concentrations above the established MDC were seen at some off-site locations. However, the elevated concentrations are likely due to natural radium in the ground water supply. Tritium, Carbon-14, Total Strontium, and gamma concentration in off-site samples were all below the set MDCs.

Results from air sampling were similar to those seen at background air sampling locations in Springfield and Marion, IL. Direct radiation measurements are comparable to the levels found at the background reference location established by IEMA, and are similar to historical levels found at the LLRW site.


In 2018, with the exception of tritium concentrations found in on-site ground water samples at Well H and Well TB, all results from IEMA's radiological environmental monitoring program at the Sheffield LLRW site were consistent with historical data and expected contamination levels. Tritium results from samples taken at Well H and Well TB, although well below the Trigger limits set in the Agreed Order, show a gradual increase in concentration. The gradual increase seen at Well H is a continuation of an upward trend that has been seen at that well over the last several years. The tritium concentrations seen at Well TB have fluctuated greatly over the last decade, but appear to have a general trend upward.

Due to the continued increase in concentration at Well H, in 2018, IEMA re-evaluated its sampling plan and added seven new wells to its routine sampling activities. Wells I, J, M, 566, 604, 606, and 607 were added to ensure that the extent of the plume to the south and southeast is captured. Of these seven new wells, only one saw results above the established MDC. The tritium concentration at Well 566 was slightly above the MDC in the third and fourth quarters of 2018. Well 566 is located on the southern edge of the southeastern pathway. Results from these wells indicated that the contamination plume has remained within the major groundwater pathways described in the Hydrology of the Sheffield LLRW Disposal Site section of this report, despite the increase in tritium concentrations seen at Wells H and TB.

IEMA's Division of Nuclear Safety will continue monitor the environs of, and evaluate its radiological environmental monitoring program for, the Sheffield LLRW site to ensure that the site is performing as expected and that the citizens and environment of Illinois are protected from the potentially harmful effects of radioactive materials buried at the site.

$\underline{Appendix\ A}$ Maps of IEMA Monitoring Locations for the Sheffield LLRW Site

Figure A-1. Sheffield Site and Approximate Groundwater Pathways

0 Legend Sheffield Water Samples Sheffield vegetation sample points Sheffield air monitoring Sheffield LLRW Buffer Zone Trout Lake C Sheffield LLRW Pencock Hill PWS

Figure A-2. Sheffield On-Site Sampling Locations

Figure A-3. Sheffield On-Site Sampling Locations

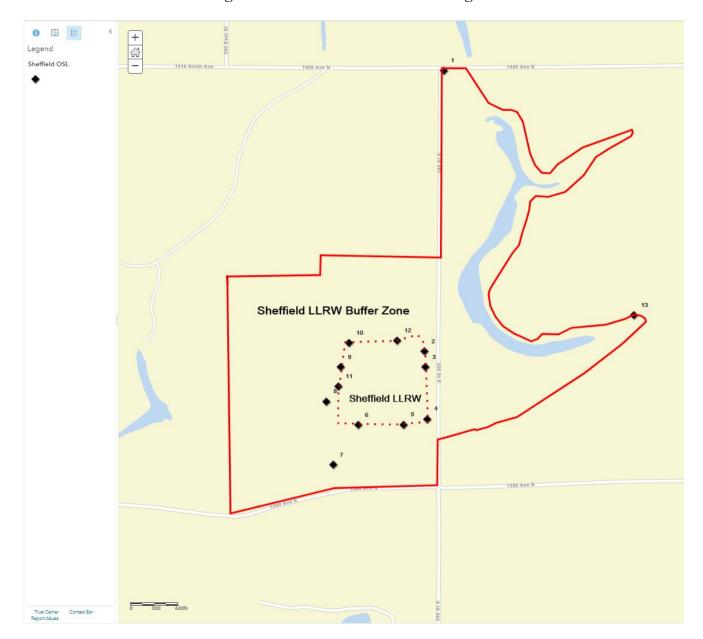
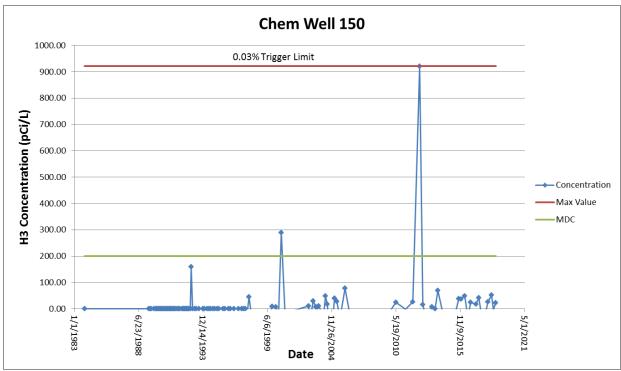



Figure A-4. Sheffield OSL Monitoring Locations

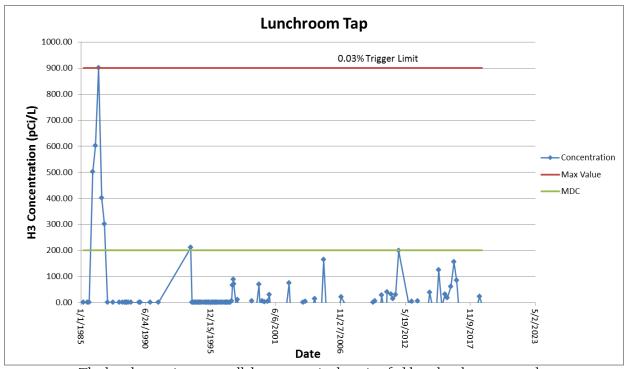
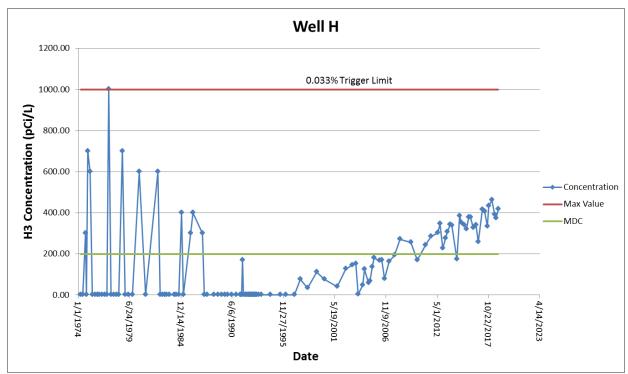
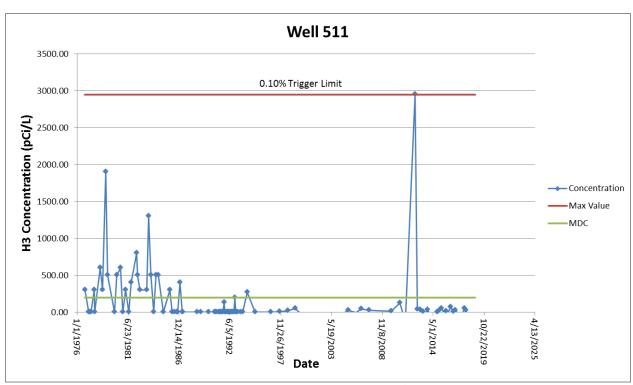
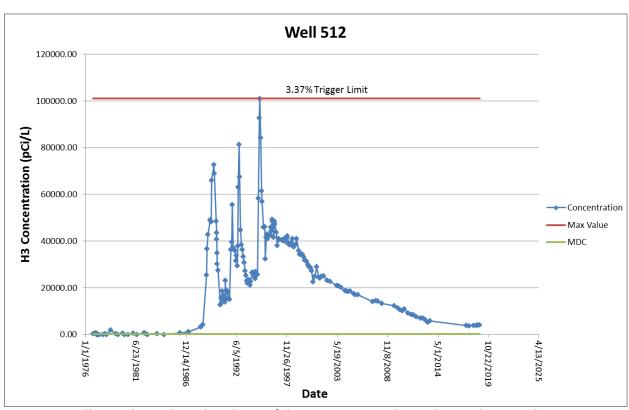

Sheffield Peripheral Water Sheffield Peripheral Sediment

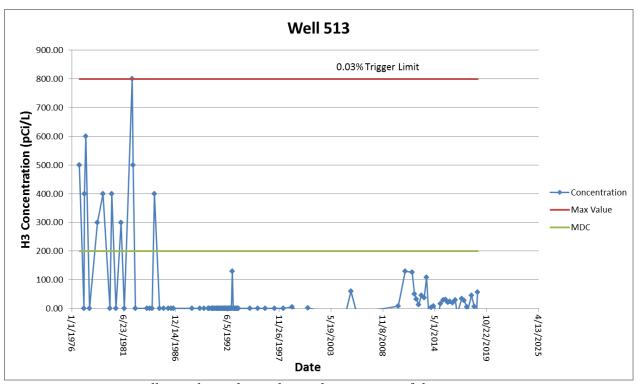
Figure A-5. Sheffield Off-Site Monitoring Locations

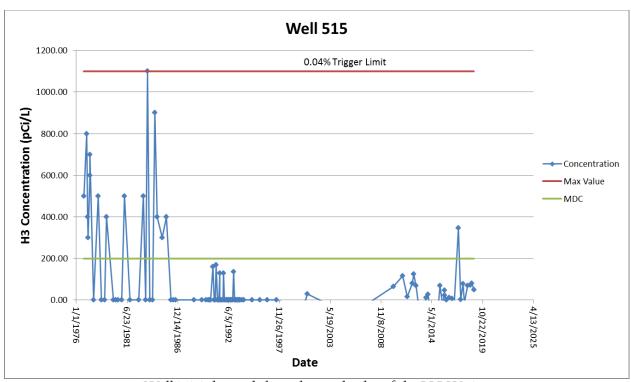

<u>Appendix B</u> On-Site Tritium (H-3) Water Sample Result Graphs


Chem Well 150 is located on the western edge of the Buffer Zone, close to the Chemical Waste site.

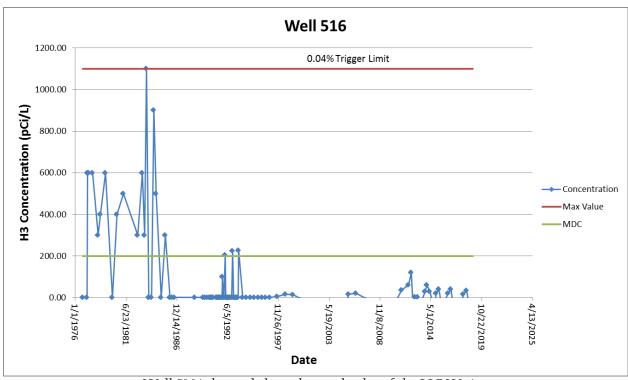

The lunchroom is not a well, but an on-site location fed by a local water supply.

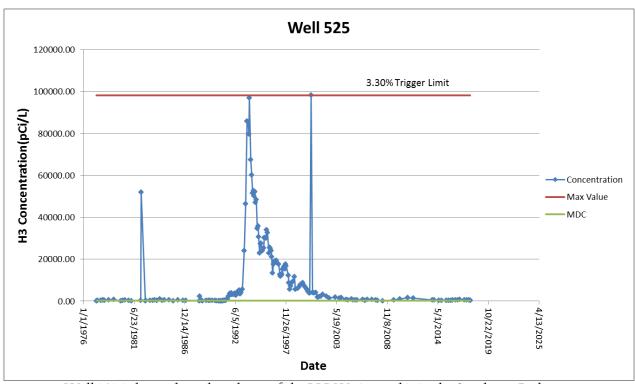
Well H is immediately to the south of the LLRW site.

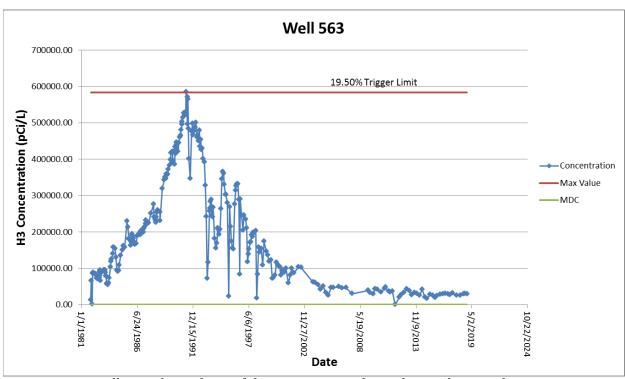

Well 511 is located immediately to the west of the LLRW site.

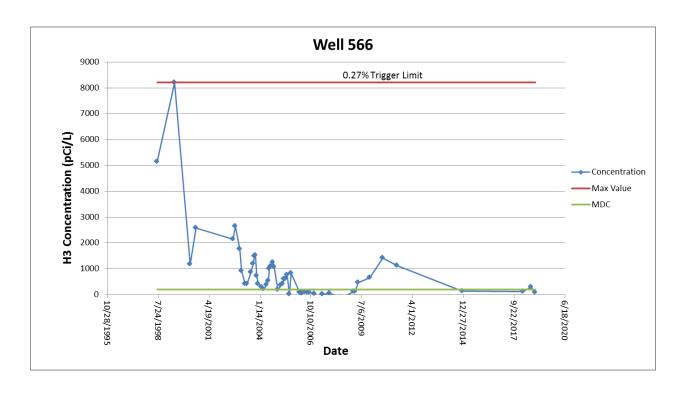

Well 512 is located south and east of the LLRW site, and is in the Southeast Pathway.

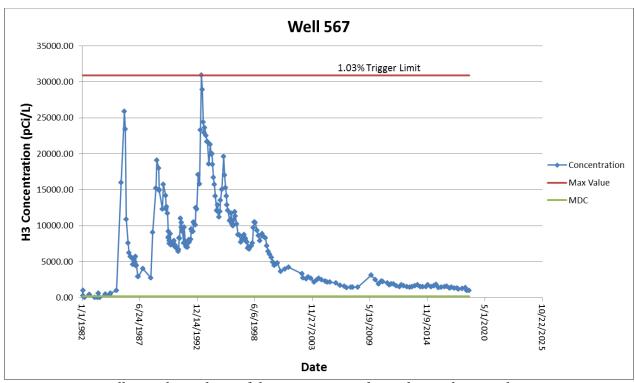
Sampling at Well 512 resumed in 2017


*MDC is 200 pCi/L, not visible at this scale.

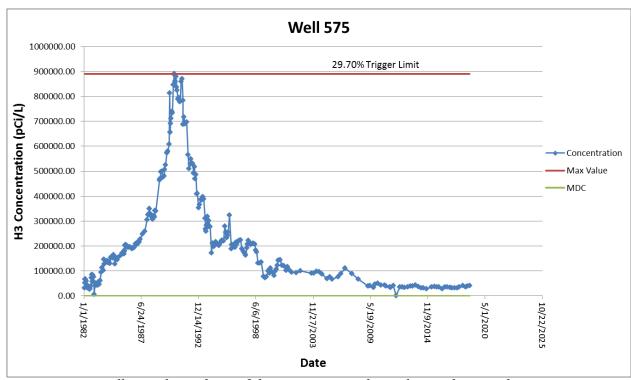

Well 513 is located near the northwest corner of the LLRW site.


Well 515 is located along the north edge of the LLRW site.

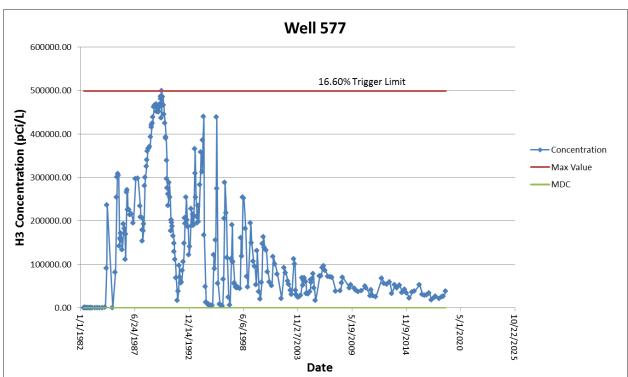

Well 516 is located along the north edge of the LLRW site.

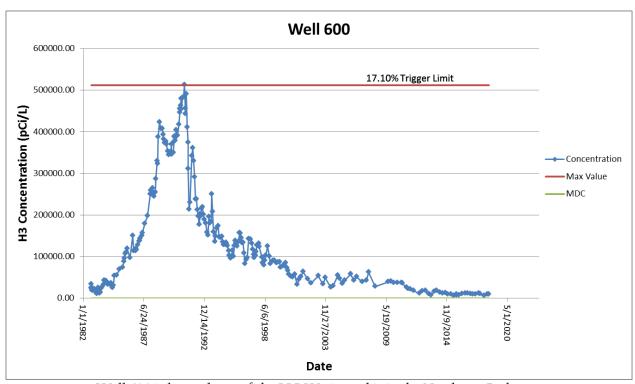


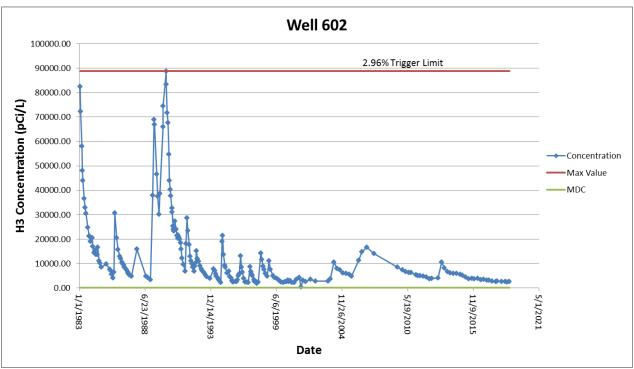
Well 525 is located south and east of the LLRW site, and is in the Southeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

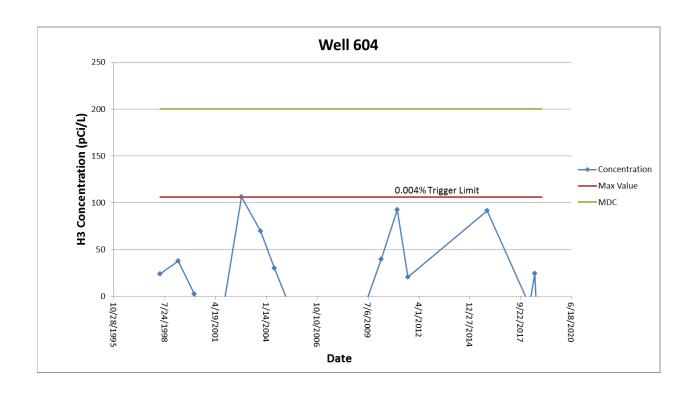


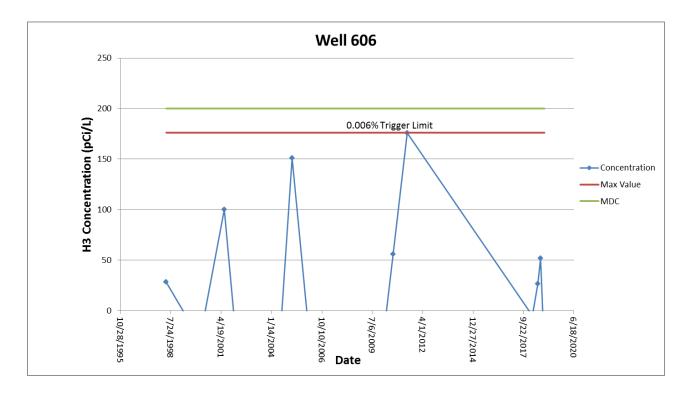
Well 563 is located east of the LLRW site, and is in the Northeast Pathway. *MDC is 200 pCi/L, not visible at this scale.



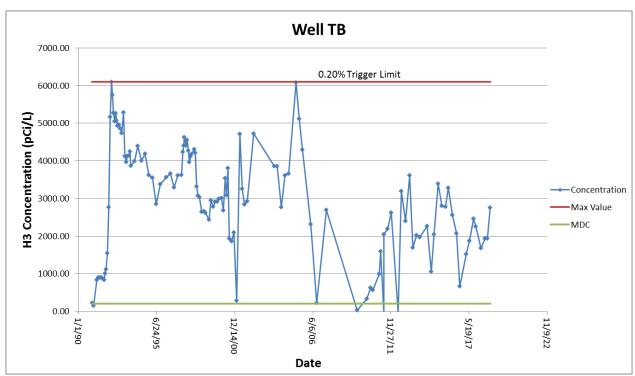

Well 567 is located east of the LLRW site, and is in the Southeast Pathway. *MDC is 200 pCi/L, not visible at this scale.


Well 575 is located east of the LLRW site, and is in the Northeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

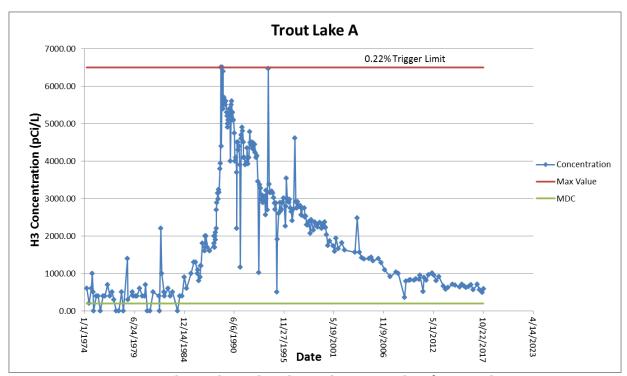

Well 577 is located east of the LLRW site, and is in the Northeast Pathway. *MDC is 200 pCi/L, not visible at this scale.

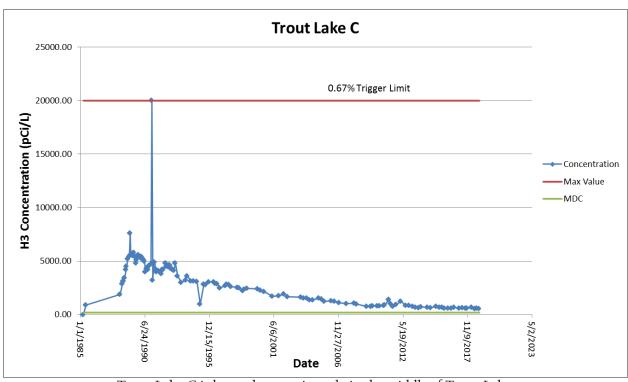


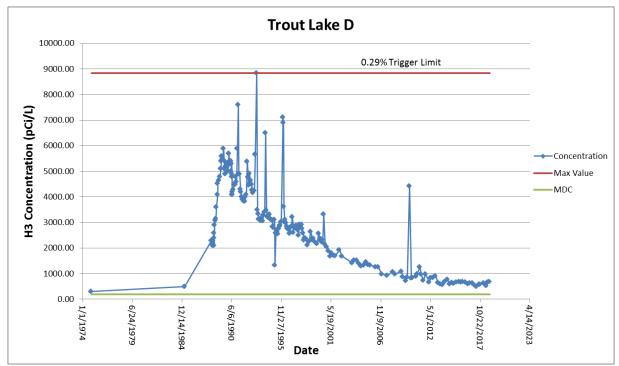
Well 600 is located east of the LLRW site and is in the Northeast Pathway.
*MDC is 200 pCi/L, not visible at this scale.

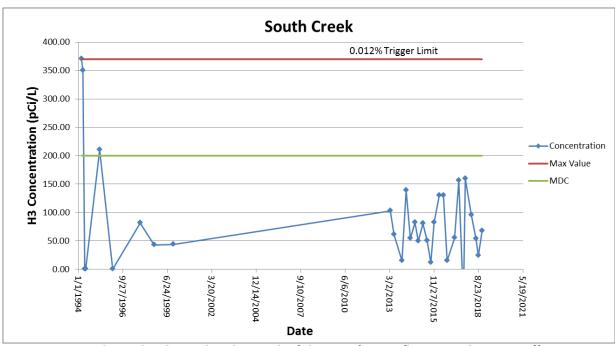


Well 602 is located east of the LLRW site, and is in the Southeast Pathway. *MDC is 200 pCi/L, not visible at this scale.



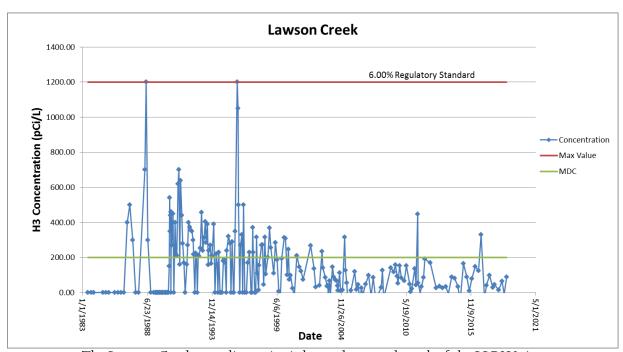



Well TB is located south of the LLRW site, and is in the Southeast Pathway.

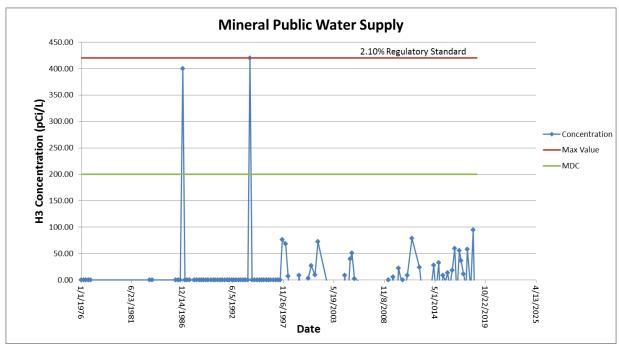

Trout Lake A is located on the north western edge of Trout Lake.

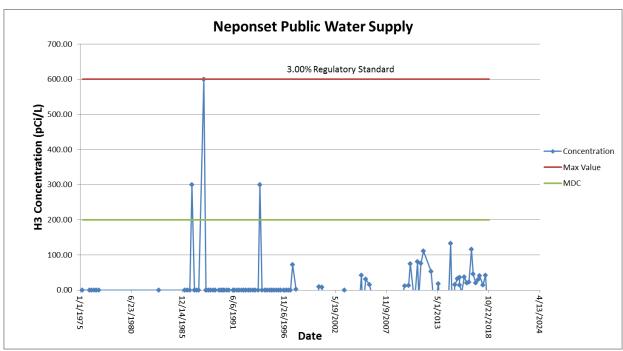
Trout Lake C is located approximately in the middle of Trout Lake. *MDC is 200 pCi/L, not visible at this scale.

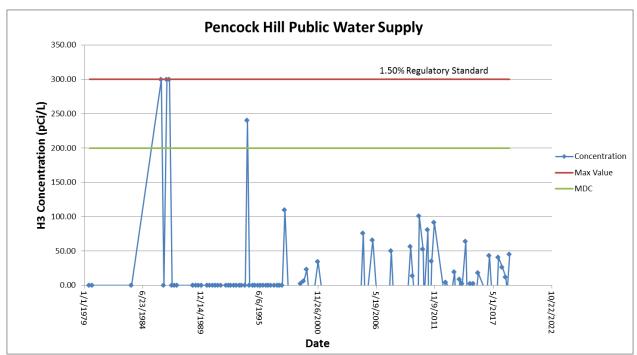
Trout Lake D is located on the eastern end of Trout Lake.

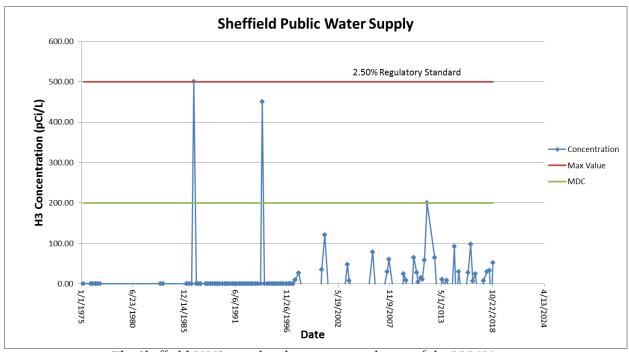


South Creek is located to the South of the site after confluence with cap runoff.


<u>Appendix C</u> Off-Site Tritium (H-3) Water Sample Result Graphs


L. Farm Well is located north and slightly west of the LLRW site.


The Lawson Creek sampling point is located east and north of the LLRW site.


The Mineral PWS sampling point is located northeast of the LLRW site.

The Neponset PWS sampling point is located south of the LLRW site.

The Pencock Hill PWS sample location is south of the LLRW site.

The Sheffield PWS sampling location is northwest of the LLRW site.

Appendix D Sheffield Sample Results

Table D.1 Gross Alpha/Beta Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Alp	Alpha Beta		
Date	Result	MDC	Result	MDC
Well 150				
8/23/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 511				
11/8/2018	3.7	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 512				
11/8/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 513				
6/28/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 515				
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 516				
11/8/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 525				
8/23/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 563				
6/28/2018	4.2	2.3	7.2	3.9
Well 566				
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
11/8/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 567				
11/8/2018	3.4	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 570				
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Well 572				
6/28/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9
Trout Lake A				
11/7/2018	<mdc< td=""><td>2.3</td><td>4.4</td><td>3.9</td></mdc<>	2.3	4.4	3.9
Trout Lake C				
8/22/2018	<mdc< td=""><td>2.3</td><td>7.2</td><td>3.9</td></mdc<>	2.3	7.2	3.9
Trout Lake D				
6/27/2018	<mdc< td=""><td>2.3</td><td>6.8</td><td>3.9</td></mdc<>	2.3	6.8	3.9

Location	Alp	Alpha Beta			
Date	Result	MDC	Result	MDC	
Well 573					
8/23/2018	2.5	2.3	<mdc< td=""><td colspan="2">3.9</td></mdc<>	3.9	
Well 574					
6/28/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
8/23/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well 575					
8/23/2018	3.3	2.3	4.6	3.9	
Well 577					
3/14/2018	2.4	2.3	5.6	3.9	
Well 602					
6/28/2018	<mdc< td=""><td>2.3</td><td>4.7</td><td>3.9</td></mdc<>	2.3	4.7	3.9	
Well 604					
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
8/23/2018	3.0	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well 606					
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
8/23/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well 607					
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
11/8/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well H					
6/28/2018	<mdc< td=""><td>2.3</td><td>5.7</td><td>3.9</td></mdc<>	2.3	5.7	3.9	
Well I					
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well J					
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well TB					
3/14/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Well 569					
6/28/2018	<mdc< td=""><td>2.3</td><td>7.2</td><td>3.9</td></mdc<>	2.3	7.2	3.9	
South Creek					
3/13/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	

Well M did not have a sufficient amount of water available for Gross Alpha/Beta analysis.

Table D.2 Gross Alpha/Beta Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Alpha Beta			ta	
Date	Result	MDC	Result	MDC	
Lawson Creek					
11/8/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	
Lorensen Farm	Creek				
6/27/2018	3.3	2.3	4.1	3.9	
Lunchroom Tap					
3/13/2018	<mdc< td=""><td>2.3</td><td>6.3</td><td>3.9</td></mdc<>	2.3	6.3	3.9	
Mineral PWS					
3/13/2018	2.6	2.3	4.3	3.9	
6/27/2018	3.7	2.3	6.2	3.9	
8/22/2018	4.6	2.3	7.2	3.9	
11/8/2018	3.3	2.3	7.6	3.9	
Neponset PWS					
8/22/2018	5.5	2.3	9.2	3.9	
Pencock Hill PWS					
8/22/2018	4.8	2.3	7.1	3.9	
Sheffield PWS					
3/13/2018	<mdc< td=""><td>2.3</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.3	<mdc< td=""><td>3.9</td></mdc<>	3.9	

Table D.3 Tritium (H-3) Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	H-3		
Date	Result	MDC	
Trout Lake A			
6/27/2018	559	181	
8/22/2018	574	181	
11/7/2018	604	181	
Trout Lake C			
3/13/2018	683	181	
6/27/2018	569	181	
8/22/2018	599	181	
11/7/2018	557	181	
Trout Lake D			
3/13/2018	634	181	
6/27/2018	527	181	
8/22/2018	681	181	
11/7/2018	682	181	
Well 150			
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181	
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181	
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181	
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181	
Well 511			
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181	
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181	
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181	
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181	

Location	H-3				
Date	Result	MDC			
Well 512					
3/14/2018	3880	181			
6/28/2018	3950	181			
8/23/2018	4050	181			
11/8/2018	4020	181			
Well 513					
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181			
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181			
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			
Well 515					
3/14/2018	<mdc< th=""><th>181</th></mdc<>	181			
6/28/2018	<mdc< th=""><th>181</th></mdc<>	181			
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			
Well 516					
3/14/2018	<mdc< th=""><th>181</th></mdc<>	181			
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181			
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			
Well 525					
3/14/2018	395	181			
6/28/2018	379	181			
8/23/2018	336	181			
11/8/2018	432	181			

Location	H	-3
Date	Result	MDC
Well 563		
3/14/2018	25300	181
6/28/2018	29100	181
8/23/2018	30900	181
11/8/2018	29400	181
Well 566		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	296	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Well 567		
3/14/2018	1270	181
6/28/2018	1390	181
8/23/2018	1010	181
11/8/2018	996	181
Well 570		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
Well 572		
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
Well 573		
8/23/2018	232	181
Well 574		
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181

Table D.3 (Continued) Tritium (H-3) Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	H-3			
Date	Result MDC			
Well 575				
3/14/2018	40300	181		
6/28/2018	36200	181		
8/23/2018	38700	181		
11/8/2018	40200	181		
Well 577				
3/14/2018	21900	181		
6/28/2018	26100	181		
8/23/2018	26500	181		
11/8/2018	38400	181		
Well 600				
3/14/2018	5710	181		
6/28/2018	9480	181		
8/23/2018	9660	181		
Well 602				
3/14/2018	2690	181		
6/28/2018	2720	181		
8/23/2018	2470	181		
11/8/2018	2540	181		
Well 604				
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181		
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181		
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181		
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181		

Location	H	-3
Date	Result	MDC
Well 606		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Well 607		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Well H		
3/14/2018	462	181
6/28/2018	392	181
8/23/2018	374	181
11/8/2018	417	181
Well I		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Well J		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181

Location	H	-3
Date	Result	MDC
Well M		
3/14/2018	<mdc< td=""><td>181</td></mdc<>	181
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/23/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Well TB		
3/14/2018	1680	181
6/28/2018	1940	181
8/23/2018	1930	181
11/8/2018	2760	181
Well 569		
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
South Creek		
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181
11/7/2018	<mdc< td=""><td>181</td></mdc<>	181

Table D.4 Tritium (H-3) Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	H	-3
Date	Result	MDC
Lawson Creek		
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181
6/28/2018	<mdc< td=""><td>181</td></mdc<>	181
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Lorensen Farm	Creek	
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181
Lorenson Farm	Well	
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181
Lunchroom Tap		
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181

Location	H-3				
Date	Result	MDC			
Sheffield PWS					
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181			
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181			
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			
Mineral PWS					
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181			
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181			
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			
Neponset PWS					
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181			
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181			
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			
Pencock Hill PW	/S				
3/13/2018	<mdc< td=""><td>181</td></mdc<>	181			
6/27/2018	<mdc< td=""><td>181</td></mdc<>	181			
8/22/2018	<mdc< td=""><td>181</td></mdc<>	181			
11/8/2018	<mdc< td=""><td>181</td></mdc<>	181			

Table D.5 Additional Radionuclide Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Am-	241	Co-	-60	Cs-	137	Stron	tium	C-	14
Date	Result	MDC	Result	MDC	Result	MDC	Result	MDC	Result	MDC
South Creek										
3/13/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Trout Lake A										
11/7/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Trout Lake C										
8/22/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Trout Lake D										
6/27/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 150										
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 511										
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>94.4</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>94.4</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>94.4</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>94.4</td><td>15.2</td></mdc<>	1.1	94.4	15.2
Well 512										
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td>1.2</td><td>1.1</td><td>50.3</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td>1.2</td><td>1.1</td><td>50.3</td><td>15.2</td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td>1.2</td><td>1.1</td><td>50.3</td><td>15.2</td></mdc<>	3.7	1.2	1.1	50.3	15.2
Well 513										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 515										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 516										
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 525										
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>39.0</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>39.0</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>39.0</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>39.0</td><td>15.2</td></mdc<>	1.1	39.0	15.2
Well 563										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>751.7</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>751.7</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>751.7</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>751.7</td><td>15.2</td></mdc<>	1.1	751.7	15.2
Well 566										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 567										
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>39.6</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>39.6</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>39.6</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>39.6</td><td>15.2</td></mdc<>	1.1	39.6	15.2
Well 569										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2

Table D.5 (Continued) Additional Radionuclide Results for On-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Am-	241	Co-	-60	Cs-	137	Stron	tium	C-14	
Date	Result	MDC	Result	MDC	Result	MDC	Result	MDC	Result	MDC
Well 570										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 572										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 573										
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 574										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td>1.4</td><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td>1.4</td><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td>1.4</td><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	3.7	1.4	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 575										
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>364.4</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>364.4</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>364.4</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>364.4</td><td>15.2</td></mdc<>	1.1	364.4	15.2
Well 577										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>753.2</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>753.2</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>753.2</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>753.2</td><td>15.2</td></mdc<>	1.1	753.2	15.2
Well 602										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 604										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 606										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
8/23/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well 607										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well H										
6/28/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well I										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Well TB										
3/14/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>170.2</td><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>170.2</td><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td>170.2</td><td>15.2</td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td>170.2</td><td>15.2</td></mdc<>	1.1	170.2	15.2
Well J										
6/28/2018									<mdc< td=""><td>15.2</td></mdc<>	15.2
Well M										
8/23/2018									<mdc< td=""><td>15.2</td></mdc<>	15.2

Well J and M did not have a sufficient amount of water available for Gamma and Total Strontium analysis.

Table D.6 Additional Radionuclide Results for Off-Site Water Samples Results are in picocuries per Liter (pCi/L)

Location	Am-	241	Co-	60	Cs-	137	Stron	tium	C-	14
Date	Result	MDC	Result	MDC	Result	MDC	Result	MDC	Result	MDC
Lawson Creek										
11/8/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Lorensen Farm	Creek									
6/27/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Lunchroom Tap										
3/13/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Mineral PWS										
6/27/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td></td><td></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td></td><td></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td></td><td></td></mdc<>	1.1		
Neponset PWS										
8/22/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Pencock Hill PW	ıs									
8/22/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2
Sheffield PWS										
3/13/2018	<mdc< td=""><td>47</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	47	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.7</td><td><mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.7	<mdc< td=""><td>1.1</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	1.1	<mdc< td=""><td>15.2</td></mdc<>	15.2

Mineral PWS sample not analyzed for C-14 due to bottle breaking prior to analysis.

Table D.7 Sheffield On-Site Sediment Sampling Results Results are in picocuries per gram (pCi/g)

Location	Am-241		Co-	-60	Cs-	137
Date	Result	MDC	Result	MDC	Result	MDC
Lawson Creek						
6/28/2018	<mdc< td=""><td>0.06</td><td><mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<></td></mdc<>	0.06	<mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<>	0.02	0.02	0.02
8/23/2018	<mdc< td=""><td>0.06</td><td><mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.06	<mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.02	<mdc< td=""><td>0.02</td></mdc<>	0.02
South Creek						
6/27/2018	<mdc< td=""><td>0.06</td><td><mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<></td></mdc<>	0.06	<mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<>	0.02	0.02	0.02
8/22/2018	<mdc< td=""><td>0.06</td><td><mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.06	<mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.02	<mdc< td=""><td>0.02</td></mdc<>	0.02
Trout Lake D						
6/27/2018	<mdc< td=""><td>0.06</td><td><mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<></td></mdc<>	0.06	<mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.02</td></mdc<></td></mdc<>	0.02	<mdc< td=""><td>0.02</td></mdc<>	0.02
8/22/2018	<mdc< td=""><td>0.06</td><td><mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<></td></mdc<>	0.06	<mdc< td=""><td>0.02</td><td>0.02</td><td>0.02</td></mdc<>	0.02	0.02	0.02

Table D.8 On-Site Vegetation Sampling Results Results are in picocuries per gram (pCi/g)

Location	Am-241		CO-	-60	CS-137		
Date	Result	MDC	Result	MDC	Result	MDC	
Onsite Composite							
6/28/2018	<mdc< td=""><td>0.4</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.4	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
8/22/2018	<mdc< td=""><td>0.4</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.4	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
Trout Lake D							
6/27/2018	<mdc< td=""><td>0.4</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.4	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	
8/22/2018	<mdc< td=""><td>0.4</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.4	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1	

Table D.9 Air Monitoring Gross Alpha/Beta Results for Sheffield Site Results are in femtocuries per cubic meter (fCi/m³)

Location	Alp	ha	Ве	eta
Date	Result	MDC	Result	MDC
Site Air				
1/2/2018	7.4	3.6	44.0	4.9
1/8/2018	5.6	3.6	34.8	4.9
1/15/2018	4.3	3.6	28.2	4.9
1/22/2018	4.1	3.6	28.8	4.9
1/29/2018	<mdc< td=""><td>3.6</td><td>29.0</td><td>4.9</td></mdc<>	3.6	29.0	4.9
2/5/2018	<mdc< td=""><td>3.6</td><td>17.9</td><td>4.9</td></mdc<>	3.6	17.9	4.9
2/12/2018	<mdc< td=""><td>3.6</td><td>38.6</td><td>4.9</td></mdc<>	3.6	38.6	4.9
2/19/2018	5.3	3.6	29.4	4.9
2/26/2018	<mdc< td=""><td>3.6</td><td>17.2</td><td>4.9</td></mdc<>	3.6	17.2	4.9
3/5/2018	<mdc< td=""><td>3.6</td><td>26.2</td><td>4.9</td></mdc<>	3.6	26.2	4.9
3/12/2018	<mdc< td=""><td>3.6</td><td>18.4</td><td>4.9</td></mdc<>	3.6	18.4	4.9
3/19/2018	4.8	3.6	25.3	4.9
3/26/2018	<mdc< td=""><td>3.6</td><td>22.3</td><td>4.9</td></mdc<>	3.6	22.3	4.9
4/2/2018	<mdc< td=""><td>3.6</td><td>19.3</td><td>4.9</td></mdc<>	3.6	19.3	4.9
4/9/2018	4.1	3.6	20.6	4.9
4/16/2018	<mdc< td=""><td>3.6</td><td>16.0</td><td>4.9</td></mdc<>	3.6	16.0	4.9
4/23/2018	<mdc< td=""><td>3.6</td><td>18.5</td><td>4.9</td></mdc<>	3.6	18.5	4.9
4/30/2018	<mdc< td=""><td>3.6</td><td>19.0</td><td>4.9</td></mdc<>	3.6	19.0	4.9
5/7/2018	<mdc< td=""><td>3.6</td><td>27.9</td><td>4.9</td></mdc<>	3.6	27.9	4.9
5/14/2018	<mdc< td=""><td>3.6</td><td>15.3</td><td>4.9</td></mdc<>	3.6	15.3	4.9
5/21/2018	<mdc< td=""><td>3.6</td><td>22.7</td><td>4.9</td></mdc<>	3.6	22.7	4.9
5/29/2018	<mdc< td=""><td>3.6</td><td>25.1</td><td>4.9</td></mdc<>	3.6	25.1	4.9
6/4/2018	<mdc< td=""><td>3.6</td><td>22.8</td><td>4.9</td></mdc<>	3.6	22.8	4.9
6/11/2018	<mdc< td=""><td>3.6</td><td>24.5</td><td>4.9</td></mdc<>	3.6	24.5	4.9
6/18/2018	<mdc< td=""><td>3.6</td><td>17.0</td><td>4.9</td></mdc<>	3.6	17.0	4.9
6/25/2018	<mdc< td=""><td>3.6</td><td>12.7</td><td>4.9</td></mdc<>	3.6	12.7	4.9

Location	Alp	ha	Ве	ta
Date	Result	MDC	Result	MDC
Site Air				
6/30/2018	<mdc< td=""><td>3.6</td><td>25.5</td><td>4.9</td></mdc<>	3.6	25.5	4.9
7/9/2018	<mdc< td=""><td>3.6</td><td>26.2</td><td>4.9</td></mdc<>	3.6	26.2	4.9
7/16/2018	<mdc< td=""><td>3.6</td><td>28.9</td><td>4.9</td></mdc<>	3.6	28.9	4.9
7/23/2018	<mdc< td=""><td>3.6</td><td>23.2</td><td>4.9</td></mdc<>	3.6	23.2	4.9
7/30/2018	<mdc< td=""><td>3.6</td><td>24.5</td><td>4.9</td></mdc<>	3.6	24.5	4.9
8/6/2018	<mdc< td=""><td>3.6</td><td>39.6</td><td>4.9</td></mdc<>	3.6	39.6	4.9
8/13/2018	<mdc< td=""><td>3.6</td><td>28.5</td><td>4.9</td></mdc<>	3.6	28.5	4.9
8/20/2018	<mdc< td=""><td>3.6</td><td>33.0</td><td>4.9</td></mdc<>	3.6	33.0	4.9
8/27/2018	<mdc< td=""><td>3.6</td><td>39.4</td><td>4.9</td></mdc<>	3.6	39.4	4.9
9/4/2018	<mdc< td=""><td>3.6</td><td>20.2</td><td>4.9</td></mdc<>	3.6	20.2	4.9
9/10/2018	<mdc< td=""><td>3.6</td><td>19.2</td><td>4.9</td></mdc<>	3.6	19.2	4.9
9/17/2018	<mdc< td=""><td>3.6</td><td>25.9</td><td>4.9</td></mdc<>	3.6	25.9	4.9
9/24/2018	<mdc< td=""><td>3.6</td><td>24.9</td><td>4.9</td></mdc<>	3.6	24.9	4.9
10/1/2018	5.3	3.6	29.5	4.9
10/9/2018	<mdc< td=""><td>3.6</td><td>21.1</td><td>4.9</td></mdc<>	3.6	21.1	4.9
10/15/2018	<mdc< td=""><td>3.6</td><td>16.1</td><td>4.9</td></mdc<>	3.6	16.1	4.9
10/22/2018	<mdc< td=""><td>3.6</td><td>21.4</td><td>4.9</td></mdc<>	3.6	21.4	4.9
10/29/2018	<mdc< td=""><td>3.6</td><td>17.4</td><td>4.9</td></mdc<>	3.6	17.4	4.9
11/5/2018	3.7	3.6	23.4	4.9
11/12/2018	<mdc< td=""><td>3.6</td><td>18.7</td><td>4.9</td></mdc<>	3.6	18.7	4.9
11/19/2018	<mdc< td=""><td>3.6</td><td>32.6</td><td>4.9</td></mdc<>	3.6	32.6	4.9
11/27/2018	<mdc< td=""><td>3.6</td><td>35.5</td><td>4.9</td></mdc<>	3.6	35.5	4.9
12/3/2018	<mdc< td=""><td>3.6</td><td>24.2</td><td>4.9</td></mdc<>	3.6	24.2	4.9
12/10/2018	<mdc< td=""><td>3.6</td><td>33.1</td><td>4.9</td></mdc<>	3.6	33.1	4.9
12/17/2018	4.7	3.6	53.1	4.9
12/24/2018	<mdc< td=""><td>3.6</td><td>26.7</td><td>4.9</td></mdc<>	3.6	26.7	4.9

Table D.10 Summary of Ambient Gamma Results

4:	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual Exposure
Location	mR/quarter	mR/quarter	mR/quarter	mR/quarter	mR/year
SHER-01	12.0	12.9	13.0	11.3	49.2
SHER-02		10.5	8.8	11.0	40.4
SHER-03	10.3	11.7	10.4	11.7	44.1
SHER-04	10.4	11.6	13.5	13.0	48.5
SHER-05	9.1	12.6	13.7	12.5	47.9
SHER-06	10.8	12.2	14.3	14.5	51.8
SHER-07	10.5	12.7	9.3	14.5	47.0
SHER-08	8.9	11.5	9.8	13.1	43.3
SHER-09	8.9	8.4	8.1	9.2	34.6
SHER-10	12.0	12.0	11.8	14.8	50.5
SHER-11	10.4	11.0	10.6	11.2	43.2
SHER-12	11.9	12.0	11.6	12.4	47.9
SHER-13	9.9	10.4	11.0	10.1	41.5

Blanks in the table indicate that dosimeters were missing at the end of the quarter.

Annual Exposure column based on averages of all available data.

Quarter length is estimated to be 91.25 days.

APPENDIX E

Background Location Sample Results

Table E.1 Gross Alpha/Beta Results for All Water Samples Results are in picocuries per Liter (pCi/L)

Location	Alp	ha	Ве	ta
Date	Result	MDC	Result	MDC
East Boat Ramp				
1/11/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
4/25/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
9/19/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
11/29/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
Strawkaws Boa	t Ramp			
1/11/2018	<mdc< td=""><td>2.4</td><td>4.5</td><td>3.9</td></mdc<>	2.4	4.5	3.9
4/25/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
9/19/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
West Boat Ram	р			
1/11/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
4/25/2018	<mdc< td=""><td>2.4</td><td>4.7</td><td>3.9</td></mdc<>	2.4	4.7	3.9
9/19/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9
11/29/2018	<mdc< td=""><td>2.4</td><td><mdc< td=""><td>3.9</td></mdc<></td></mdc<>	2.4	<mdc< td=""><td>3.9</td></mdc<>	3.9

Table E.2 Tritium (H-3) Results for Water Samples from Background Location Results are in picocuries per liter (pCi/L)

Location	H	-3
Date	Result	MDC
East Boat Ramp		
1/11/2018	<mdc< td=""><td>181</td></mdc<>	181
4/25/2018	<mdc< td=""><td>181</td></mdc<>	181
9/19/2018	<mdc< td=""><td>181</td></mdc<>	181
11/29/2018	<mdc< td=""><td>181</td></mdc<>	181
Strawkaws Boa		
1/11/2018	<mdc< td=""><td>181</td></mdc<>	181
4/25/2018	<mdc< td=""><td>181</td></mdc<>	181
9/19/2018	<mdc< td=""><td>181</td></mdc<>	181
West Boat Ram	р	
1/11/2018	<mdc< td=""><td>181</td></mdc<>	181
4/25/2018	<mdc< td=""><td>181</td></mdc<>	181
9/19/2018	<mdc< td=""><td>181</td></mdc<>	181
11/29/2018	<mdc< td=""><td>181</td></mdc<>	181

Table E.3 Additional Radionuclides Results for Water Samples from Background Location Results are in picocuries per liter (pCi/L)

Location	Am-	241	Co-	60	Cs-	137	Stror	itium	C-	14
Date	Result	MDC	Result	MDC	Result	MDC	Result	MDC	Result	MDC
East Boat Ramp										
1/11/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
4/25/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
9/19/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
11/29/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td><mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td><mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td><mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.6	<mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	0.5	<mdc< td=""><td>15.2</td></mdc<>	15.2
Strawkaws Boa	t Ramp									
1/11/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
4/25/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
9/19/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
West Boat Ram	p									
1/11/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
4/25/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
9/19/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td></td><td></td><td></td><td></td></mdc<>	3.6				
11/29/2018	<mdc< td=""><td>45</td><td><mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td><mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	45	<mdc< td=""><td>3.9</td><td><mdc< td=""><td>3.6</td><td><mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.9	<mdc< td=""><td>3.6</td><td><mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<></td></mdc<>	3.6	<mdc< td=""><td>0.5</td><td><mdc< td=""><td>15.2</td></mdc<></td></mdc<>	0.5	<mdc< td=""><td>15.2</td></mdc<>	15.2

Strontium and Carbon-14 analysis added to the background location samples in November 2018 to provide better reference data to compare Sheffield sample results to.

Table E.4 Gamma Results for Sediment Samples from Background Location Results are in picocuries per liter (pCi/g)

Location	Am-241		Co	-60	Cs-137		
Date	Result	MDC	Result MDC		Result	MDC	
East Boat Ramp							
4/25/2018	<mdc< td=""><td>0.02</td><td><mdc< td=""><td>0.01</td><td>0.02</td><td>0.01</td></mdc<></td></mdc<>	0.02	<mdc< td=""><td>0.01</td><td>0.02</td><td>0.01</td></mdc<>	0.01	0.02	0.01	
West Boat Ram	p						
9/26/2018			<mdc< td=""><td>0.01</td><td>0.04</td><td>0.01</td></mdc<>	0.01	0.04	0.01	

Sediment sample unobtainable at West Boat Ramp on 9/26/2018.

Table E.5 Gamma Results for Vegetation Samples from Background Location Results are in picocuries per liter (pCi/g)

Location	Am-241		Co	-60	Cs-	-137
Date	Result	MDC	Result	MDC	Result	MDC
East Boat Ramp						
4/25/2018	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
9/19/2018	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
Strawkaws Boa	Strawkaws Boat Ramp					
4/25/2018	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
9/19/2018	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
West Boat Ram	West Boat Ramp					
4/25/2018	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1
9/19/2018	<mdc< td=""><td>0.8</td><td><mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<></td></mdc<>	0.8	<mdc< td=""><td>0.1</td><td><mdc< td=""><td>0.1</td></mdc<></td></mdc<>	0.1	<mdc< td=""><td>0.1</td></mdc<>	0.1

Table E.6 Air Monitoring Gross Alpha/Beta Results for Background Location (Springfield)
Results are in femtocuries per cubic meter (fCi/m³)

Location	Alpha		Beta	
Date	Result	MDC	Result	MDC
Knotts Street Air Sampler				
1/3/2018	6.0	3.4	40.9	4.8
1/18/2018	4.5	3.4	37.8	4.8
1/22/2018	6.0	3.4	39.3	4.8
1/29/2018	<mdc< td=""><td>3.4</td><td>26.6</td><td>4.8</td></mdc<>	3.4	26.6	4.8
2/5/2018	<mdc< td=""><td>3.4</td><td>25.9</td><td>4.8</td></mdc<>	3.4	25.9	4.8
2/13/2018	3.5	3.4	38.7	4.8
2/20/2018	4.0	3.4	33.5	4.8
2/26/2018	<mdc< td=""><td>3.4</td><td>14.6</td><td>4.8</td></mdc<>	3.4	14.6	4.8
3/5/2018	4.4	3.4	26.2	4.8
3/12/2018	3.6	3.4	25.0	4.8
3/19/2018	4.6	3.4	30.3	4.8
3/27/2018	<mdc< td=""><td>3.4</td><td>20.8</td><td>4.8</td></mdc<>	3.4	20.8	4.8
4/2/2018	3.6	3.4	27.8	4.8
4/9/2018	<mdc< td=""><td>3.4</td><td>21.2</td><td>4.8</td></mdc<>	3.4	21.2	4.8
4/17/2018	4.3	3.4	22.1	4.8
4/25/2018	<mdc< td=""><td>3.4</td><td>22.4</td><td>4.8</td></mdc<>	3.4	22.4	4.8
5/1/2018	<mdc< td=""><td>3.4</td><td>20.2</td><td>4.8</td></mdc<>	3.4	20.2	4.8
5/8/2018	<mdc< td=""><td>3.4</td><td>28.0</td><td>4.8</td></mdc<>	3.4	28.0	4.8
5/14/2018	<mdc< td=""><td>3.4</td><td>37.4</td><td>4.8</td></mdc<>	3.4	37.4	4.8
5/21/2018	<mdc< td=""><td>3.4</td><td>32.3</td><td>4.8</td></mdc<>	3.4	32.3	4.8
5/29/2018	<mdc< td=""><td>3.4</td><td>32.4</td><td>4.8</td></mdc<>	3.4	32.4	4.8
6/5/2018	<mdc< td=""><td>3.4</td><td>22.6</td><td>4.8</td></mdc<>	3.4	22.6	4.8
6/11/2018	<mdc< td=""><td>3.4</td><td>34.0</td><td>4.8</td></mdc<>	3.4	34.0	4.8
6/18/2018	<mdc< td=""><td>3.4</td><td>31.6</td><td>4.8</td></mdc<>	3.4	31.6	4.8

Location	Alpha		Beta	
Date	Result	Result MDC		MDC
Knotts Street Air Sampler				
7/3/2018	<mdc< td=""><td>3.4</td><td>19.5</td><td>4.8</td></mdc<>	3.4	19.5	4.8
7/10/2018	3.6	3.4	29.3	4.8
7/17/2018	<mdc< td=""><td>3.4</td><td>29.1</td><td>4.8</td></mdc<>	3.4	29.1	4.8
7/23/2018	<mdc< td=""><td>3.4</td><td>28.5</td><td>4.8</td></mdc<>	3.4	28.5	4.8
7/31/2018	<mdc< td=""><td>3.4</td><td>27.8</td><td>4.8</td></mdc<>	3.4	27.8	4.8
8/6/2018	4.2	3.4	47.0	4.8
8/21/2018	<mdc< td=""><td>3.4</td><td>31.5</td><td>4.8</td></mdc<>	3.4	31.5	4.8
8/28/2018	<mdc< td=""><td>3.4</td><td>42.9</td><td>4.8</td></mdc<>	3.4	42.9	4.8
9/5/2018	<mdc< td=""><td>3.4</td><td>21.0</td><td>4.8</td></mdc<>	3.4	21.0	4.8
9/11/2018	<mdc< td=""><td>3.4</td><td>18.6</td><td>4.8</td></mdc<>	3.4	18.6	4.8
9/17/2018	<mdc< td=""><td>3.4</td><td>27.4</td><td>4.8</td></mdc<>	3.4	27.4	4.8
9/25/2018	<mdc< td=""><td>3.4</td><td>30.6</td><td>4.8</td></mdc<>	3.4	30.6	4.8
10/1/2018	4.4	3.4	29.9	4.8
10/9/2018	<mdc< td=""><td>3.4</td><td>24.4</td><td>4.8</td></mdc<>	3.4	24.4	4.8
10/15/2018	<mdc< td=""><td>3.4</td><td>17.1</td><td>4.8</td></mdc<>	3.4	17.1	4.8
10/23/2018	<mdc< td=""><td>3.4</td><td>24.9</td><td>4.8</td></mdc<>	3.4	24.9	4.8
10/31/2018	<mdc< td=""><td>3.4</td><td>23.3</td><td>4.8</td></mdc<>	3.4	23.3	4.8
11/5/2018	<mdc< td=""><td>3.4</td><td>24.6</td><td>4.8</td></mdc<>	3.4	24.6	4.8
11/13/2018	<mdc< td=""><td>3.4</td><td>21.9</td><td>4.8</td></mdc<>	3.4	21.9	4.8
11/19/2018	<mdc< td=""><td>3.4</td><td>31.6</td><td>4.8</td></mdc<>	3.4	31.6	4.8
11/27/2018	4.0	3.4	38.6	4.8
12/3/2018	<mdc< td=""><td>3.4</td><td>28.5</td><td>4.8</td></mdc<>	3.4	28.5	4.8
12/11/2018	<mdc< td=""><td>3.4</td><td>26.4</td><td>4.8</td></mdc<>	3.4	26.4	4.8
12/19/2018	<mdc< td=""><td>3.4</td><td>36.4</td><td>4.8</td></mdc<>	3.4	36.4	4.8

Table E.7 Air Monitoring Gross Alpha/Beta Results for Background Location (Marion) Results are in femtocuries per cubic meter (fCi/m³)

Location	Alpha		Beta	
Date	Result	MDC	Result	MDC
Marion Office				
1/3/2018	5.9	3.8	37.2	5.1
1/9/2018	6.7	3.8	48.4	5.1
1/23/2018	<mdc< td=""><td>3.8</td><td>21.8</td><td>5.1</td></mdc<>	3.8	21.8	5.1
1/30/2018	<mdc< td=""><td>3.8</td><td>32.4</td><td>5.1</td></mdc<>	3.8	32.4	5.1
2/6/2018	<mdc< td=""><td>3.8</td><td>26.5</td><td>5.1</td></mdc<>	3.8	26.5	5.1
2/14/2018	4.5	3.8	30.3	5.1
2/20/2018	4.0	3.8	30.7	5.1
3/1/2018	<mdc< td=""><td>3.8</td><td>19.1</td><td>5.1</td></mdc<>	3.8	19.1	5.1
3/20/2018	4.1	3.8	25.6	5.1
3/27/2018	<mdc< td=""><td>3.8</td><td>23.4</td><td>5.1</td></mdc<>	3.8	23.4	5.1
4/3/2018	<mdc< td=""><td>3.8</td><td>20.0</td><td>5.1</td></mdc<>	3.8	20.0	5.1
4/11/2018	<mdc< td=""><td>3.8</td><td>29.8</td><td>5.1</td></mdc<>	3.8	29.8	5.1
4/18/2018	<mdc< td=""><td>3.8</td><td>20.1</td><td>5.1</td></mdc<>	3.8	20.1	5.1
4/23/2018	<mdc< td=""><td>3.8</td><td>17.8</td><td>5.1</td></mdc<>	3.8	17.8	5.1
5/1/2018	<mdc< td=""><td>3.8</td><td>19.7</td><td>5.1</td></mdc<>	3.8	19.7	5.1
5/8/2018	<mdc< td=""><td>3.8</td><td>26.3</td><td>5.1</td></mdc<>	3.8	26.3	5.1
5/15/2018	4.0	3.8	36.5	5.1
5/22/2018	<mdc< td=""><td>3.8</td><td>26.1</td><td>5.1</td></mdc<>	3.8	26.1	5.1
5/29/2018	<mdc< td=""><td>3.8</td><td>28.0</td><td>5.1</td></mdc<>	3.8	28.0	5.1
6/5/2018	<mdc< td=""><td>3.8</td><td>21.7</td><td>5.1</td></mdc<>	3.8	21.7	5.1
6/12/2018	<mdc< td=""><td>3.8</td><td>39.7</td><td>5.1</td></mdc<>	3.8	39.7	5.1
6/19/2018	<mdc< td=""><td>3.8</td><td>39.1</td><td>5.1</td></mdc<>	3.8	39.1	5.1
6/26/2018	<mdc< td=""><td>3.81</td><td>19.61</td><td>5.12</td></mdc<>	3.81	19.61	5.12

Location	Alpha		Beta	
Date	Result MDC		Result	MDC
Marion Office				
7/3/2018 ^a				
7/11/2018	<mdc< td=""><td>3.8</td><td>13.1</td><td>5.1</td></mdc<>	3.8	13.1	5.1
7/18/2018	<mdc< td=""><td>3.8</td><td>34.6</td><td>5.1</td></mdc<>	3.8	34.6	5.1
7/25/2018	<mdc< td=""><td>3.8</td><td>36.4</td><td>5.1</td></mdc<>	3.8	36.4	5.1
7/31/2018	<mdc< td=""><td>3.8</td><td>30.9</td><td>5.1</td></mdc<>	3.8	30.9	5.1
8/8/2018	<mdc< td=""><td>3.8</td><td>40.8</td><td>5.1</td></mdc<>	3.8	40.8	5.1
8/15/2018	<mdc< td=""><td>3.8</td><td>39.0</td><td>5.1</td></mdc<>	3.8	39.0	5.1
8/22/2018	<mdc< td=""><td>3.8</td><td>31.5</td><td>5.1</td></mdc<>	3.8	31.5	5.1
8/27/2018	<mdc< td=""><td>3.8</td><td>48.6</td><td>5.1</td></mdc<>	3.8	48.6	5.1
9/11/2018	<mdc< td=""><td>3.8</td><td>17.2</td><td>5.1</td></mdc<>	3.8	17.2	5.1
9/19/2018 ^b				
9/26/2018	<mdc< td=""><td>3.8</td><td>25.2</td><td>5.1</td></mdc<>	3.8	25.2	5.1
10/2/2018	<mdc< td=""><td>3.8</td><td>34.7</td><td>5.1</td></mdc<>	3.8	34.7	5.1
10/9/2018	3.9	3.8	32.7	5.1
10/17/2018	<mdc< td=""><td>3.8</td><td>17.2</td><td>5.1</td></mdc<>	3.8	17.2	5.1
10/22/2018	<mdc< td=""><td>3.8</td><td>20.5</td><td>5.1</td></mdc<>	3.8	20.5	5.1
10/29/2018	<mdc< td=""><td>3.8</td><td>25.7</td><td>5.1</td></mdc<>	3.8	25.7	5.1
11/8/2018	<mdc< td=""><td>3.8</td><td>27.6</td><td>5.1</td></mdc<>	3.8	27.6	5.1
11/14/2018	<mdc< td=""><td>3.8</td><td>30.2</td><td>5.1</td></mdc<>	3.8	30.2	5.1
11/21/2018	4.5	3.8	37.4	5.1
11/29/2018	5.0	3.8	39.9	5.1
12/5/2018	<mdc< td=""><td>3.8</td><td>18.9</td><td>5.1</td></mdc<>	3.8	18.9	5.1
12/10/2018	<mdc< td=""><td>3.8</td><td>39.4</td><td>5.1</td></mdc<>	3.8	39.4	5.1
12/19/2018	<mdc< td=""><td>3.8</td><td>25.9</td><td>5.1</td></mdc<>	3.8	25.9	5.1

a) Building struck by lightning, lost power

b) Lost power at pump, no data saved

Table E.8 Summary of Ambient Gamma Results for Background Location

	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual Exposure
Location	mR/quarter	mR/quarter	mR/quarter	mR/quarter	mR/year
KC-01	11.1	11.1	10.6	10.6	43.4
KC-02	11.1	10.3	10.0	9.1	40.6
KC-03	9.8	8.3	10.5	7.5	36.0
KC-04	9.4	9.9	9.7	9.1	38.1
KC-05	10.5	8.5	11.5	9.5	40.0
KC-06	9.8	9.8	10.4	9.3	39.2
KC-07	8.9	8.9	11.6	7.2	36.6
KC-08	9.9	8.8	8.5	9.0	36.1
KC-09	9.6	8.9	10.2	9.5	38.2
KC-10	8.9	10.1	11.4	9.3	39.7
KC-11		11.1	10.6	11.0	43.6
KC-12	10.0	10.1	11.1	9.3	40.6
KC-13		11.0	10.2	8.2	39.3
KC-14	10.4	8.6	9.8	8.7	37.4
KC-15	11.3	11.5	9.9	9.7	42.3

Blanks in the table indicate that dosimeters were missing at the end of the quarter.

Annual Exposure column based on averages of all available data.

Quarter length is estimated to be 91.25 days.

Illinois Emergency Management Agency 1035 Outer Park Drive Springfield, IL 62704

www.iema.illinois.gov